• Title/Summary/Keyword: crystallite

Search Result 372, Processing Time 0.03 seconds

Alkali swelling characteristics of wood elements (목재 구성세포의 알칼리 팽윤 특성)

  • 황원중;김남훈
    • Journal of Korea Foresty Energy
    • /
    • v.20 no.1
    • /
    • pp.62-72
    • /
    • 2001
  • To elucidate the behaviors of alkali swelllng of woods. the dimensional change in cross section of cell elements of four major Korean woods during alkali swelling were examined by an optical microscory, an imaging analysis method and an X-ray diffrartion During alkali swelling, tracheid diameter of Larix kaempferi wood showed greater swelling property than that of Pinus koraiensis wood, and the cell wall swelled highly over 10% sodium hydroxide solution treatment. The radial diameter of vessel elements in earlywood shrunk, but it swelled slightly in tangential direction. When treated with 5% NaOH, the wall thickness of wood fiber increased about three times over the original one. The thickness of cell wall in all elements and the diameter of wood fiber and tracheid showed almost isotropic shrinkage. The diameter of cell elements during the mercerization process decreased, but cell wall thickness Increased. Crystal transformation of cellulose in wood was not occurred by alkali treatments. but relative crystallinity and crystallite width of the woods increased slightly. Consequently, it was demonstrated that the swelling properties of woods were dependant on wood species, cell elements and alkali concentration.

  • PDF

Qualitative and Quantitative Anatomical Characteristics of Four Tropical Wood Species from Moluccas, Indonesia

  • Hidayat, Wahyu;Kim, Yun Ki;Jeon, Woo Seok;Lee, Ju Ah;Kim, Ah Ran;Park, Se Hwi;Maail, Rohny S;Kim, Nam Hun
    • Journal of the Korean Wood Science and Technology
    • /
    • v.45 no.4
    • /
    • pp.369-381
    • /
    • 2017
  • The objective of this study was to compare the wood anatomical characteristics of local tree species in Moluccas, Indonesia i.e., Moluccan ironwood (Intsia bijuga), linggua (Pterocarpus indicus), red meranti (Shorea parvifolia), and gofasa (Vitex cofassus). Qualitative evaluation was conducted by observing the anatomical structure in cross, radial, and tangential sections of each sample. For the quantitative evaluation, the dimensions of vessels, rays, and fibers were measured. Qualitative evaluation showed that crystals were observed in Moluccan ironwood, linggua, and gofasa, while resin canals were only observed in red meranti. Tyloses were frequently observed in gofasa but infrequently observed in linggua and red meranti. Quantitative evaluation showed that Moluccan ironwood with the higher density had thicker fiber wall, higher quantity of ray number, and wider rays than the other species. Red meranti had higher values of ray height and fiber length than the other three species. The results also revealed that linggua showed the highest values of relative crystallinity and crystallite width. Red meranti and gofasa showed similar values of relative crystallinity and crystallite width, while Moluccan ironwood showed the lowest values. The basic qualitative and quantitative anatomical characteristics discussed could provide useful information for further utilizations of such wood species.

Synthesis of Iron Oxide Using Ferrous and Ferric Sulfate (황산제일철과 황산제이철을 이용한 산화철 합성)

  • Eom, Tae-Hyoung;Tuan, Huynh Thanh;Kim, Sam-Joong;Suh, Dong-Soo
    • Korean Journal of Materials Research
    • /
    • v.20 no.6
    • /
    • pp.301-306
    • /
    • 2010
  • The chemical formula of magnetite ($Fe_3O_4$) is $FeO{\cdot}Fe_2O_3$, t magnetite being composed of divalent ferrous ion and trivalent ferric ion. In this study, the influence of the coexistence of ferrous and ferric ion on the formation of iron oxide was investigated. The effect of the co-precipitation parameters (equivalent ratio and reaction temperature) on the formation of iron oxide was investigated using ferric sulfate, ferrous sulfate and ammonia. The equivalent ratio was varied from 0.1 to 3.0 and the reaction temperature was varied from 25 to 75. The concentration of the three starting solutions was 0.01mole. Jarosite was formed when equivalent ratios were 0.1-0.25 and jarosite, goethite, magnetite were formed when equivalent ratios were 0.25-0.6. Single-phase magnetite was formed when the equivalent ratio was above 0.65. The crystallite size and median particle size of the magnetite decreased when the equivalent ratio was increased from 0.65 to 3.0. However, the crystallite size and median particle size of the magnetite increased when the reaction temperature was increased from $25^{\circ}C$ to $75^{\circ}C$. When ferric and ferrous sulfates were used together, the synthetic conditions to get single phase magnetite became simpler than when ferrous sulfate was used alone because of the co-existence of $Fe^{2+}$ and $Fe^{3+}$ in the solution.

Low temperature synthesis of ZnO nanopowders by the polymerized complex method (착체중합법을 이용한 ZnO 나노분말의 저온합성)

  • 권용재;김경훈;임창성;심광보
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.12 no.5
    • /
    • pp.229-233
    • /
    • 2002
  • Nano-sized ZnO particles were successfully synthesized at low temperatures by a polymerized complex method via an organochemical route. The polymeric precursors could be prepared using Zn nitrate hexahydrate and a mixed solution of citric acid and ethylene glycol as a chelating agent and a reaction medium. The polymeric precursors were calcined at temperatures from 300 to $700^{\circ}C$ for 3 h, and evaluated for degree of crystallization process, thermal decomposition, surface morphology and crystallite size. The thermal decomposition and crystallization process were analyzed by TG-DTA, FI-IR and XRD. The morphology and crystallite size of the calcined particles were evaluated by scanning electron microscopy (SEM), transmittance electron microscopy (TEM) and Scherrer's equation. Crystallization of the ZnO particles was detected at $300^{\circ}C$ and entirely completed above $400^{\circ}C$. Particles calcined between 400 and $700^{\circ}C$ showed a uniform size distribution with a round shape. The average particle sizes calcined at $400^{\circ}C$ for 3 hour were 30~40nm showing an ordinary tendency to increase with the temperatures.

Review: Magnetite Synthesis using NanoFermentation (Review: NanoFermentation을 이용한 자철석 합성연구)

  • Moon, Ji-Won;Roh, Yul;Phelps, Tommy J.
    • Economic and Environmental Geology
    • /
    • v.45 no.2
    • /
    • pp.195-204
    • /
    • 2012
  • Biomineralization has been explored for geochemical cycles and microbial tolerance mechanisms to metal toxicity. Here, we are introducing NanoFermentation which enables economic, environmentally friendly, requiring low input energy, and scalable manufacturing of nano-dimensioned magnetite. We are also focusing on controlling factors of crystallite size which can determine superparamagnetism and ferrimagnetism. Controlling factors are such as microbial species, temperature, incubation time, medium composition, substituted elements and their concentration, precursor type, reaction volume, precursor concentration density and their combinations. Crystallite size distribution of biomagnetite depends on the balance between nuclei generation and crystal growth. Biomineralization will elucidate elemental cycles on earth crust and microbial ecology as well as it will be applied to material sciences and devices via massive production of nanomaterials.

Synthesis of nano-crystalline slaked lime using design of experiment (실험계획법을 이용한 나노 결정 소석회 합성)

  • Kim, Jin-Seong;Kim, Jung-Woo;Lee, Hee-Soo;Kim, Yong-Nam;Shin, Hyun-Gyoo;Kim, Hwan
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.18 no.4
    • /
    • pp.174-178
    • /
    • 2008
  • Nano-crystalline slaked lime was synthesized using design of experiment. In order to synthesize slaked lime, calcium chloride $(CaCl_2)$ and urea were used as starting materials. Calcium chloride solution and urea solution were mixed and heated in vessel that calcium carbonate was precipitated during heating. Precipitates were filtered, washed several times using D.I.water and ethanol and finally dried in oven. Slaked lime $(Ca(OH)_2)$ has been fabricated by the hydration of calcined $CaCO_3$. Design of experiment (Taguchi method) was used to optimize parameter, to minimize noise factors of experiment and to statistically analyze the results. Slaked lime having about 50 nm in optimized crystallite size could be obtained by calcination of $CaCO_3$ at $1000^{\circ}C$ for 0.5 h and hydration with D.I water containing ethanol and oxalic acid.

Fabrication of Spherical SiO2 Powders from Aqueous SiO2 Sol via Ultrasonic Pyrolysis (초음파 분무 열분해 공정을 이용한 수계 SiO2 Sol로부터의 구형 SiO2 분말 합성)

  • Lee, Ji-Hyeon;Hwang, Hae-Jin;Han, Kyu-Sung;Hwang, Kwang-Taek;Kim, Jin-Ho
    • Korean Journal of Materials Research
    • /
    • v.26 no.10
    • /
    • pp.570-576
    • /
    • 2016
  • Using the ultrasonic pyrolysis method, spherical $SiO_2$ powders were synthesized from aqueous $SiO_2$ sol as a starting material. The effects of pyrolysis conditions such as reaction temperature, $SiO_2$ sol concentration, and physical properties of precursor were investigated for the morphologies of the resulting $SiO_2$ powders. The particle size, shape, and crystallite size of the synthesized $SiO_2$ powders were demonstrated according to the pyrolysis conditions. Generally, the synthesized $SiO_2$ particles were amorphous phase and showed spherical morphology with a smooth surface. It was revealed that increased crystallite size and decreased spherical $SiO_2$ particle size were obtained with increases of the pyrolysis reaction temperature. Also, quantity of spherical $SiO_2$ particles decreased with the decrease in the concentration and surface tension of the precursor.

A Study on the Ortho-para Hydrogen Conversion Characteristics of Liquefied Hydrogen by Perovskite Catalysts (페로브스카이트 촉매에 의한 액화수소의 올소-파라 수소변환특성에 관한 연구)

  • Nah, In Wook;Kim, Jung Hyun;Das, Taraknath;Kwon, Soon-Cheol;Oh, In-Hwan
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.26 no.1
    • /
    • pp.15-20
    • /
    • 2015
  • During the liquefaction of hydrogen, the ortho hydrogen is converted into the para form with heat release that evaporates the liquefied hydrogen into the gaseous one backwards. The ortho-para conversion catalysts are usually used during liquefaction to avoid such boil-off. In order to compare and analyze the performance of the ortho-para hydrogen conversion catalysts, in-situ FT-IR device was designed and manufactured to measure the para hydrogen conversion rate in real-time. $LaFeO_3$ and $La_{0.7}Sr_{0.3}Cu_{0.3}Fe_{0.7}O_3$ perovskite catalysts were prepared by the citrate sol-gel method and their spin conversion characteristics from ortho to para hydrogen were investigated by in-situ FTIR spectroscopy at 17K. It was found that the spin conversion was affected by surface area, particle size, and crystallite size of the catalysts. Thus, the $La_{0.7}Sr_{0.3}Cu_{0.3}Fe_{0.7}O_3$ perovskite catalyst that had higher surface area, higher crystallite size, and smaller particle size than $LaFeO_3$ showed the better spin conversion property of 32.3% at 17K in 120min interaction with the perovskite catalysts.

Effect of Sintering Temperature on the Micro Strain and Magnetic Properties of Ni-Zn Nanoferrites

  • Venkatesh, D.;Siva Ram Prasad, M.;Rajesh Babu, B.;Ramesh, K.V.;Trinath, K.
    • Journal of Magnetics
    • /
    • v.20 no.3
    • /
    • pp.229-240
    • /
    • 2015
  • In this study, nanocrystalline ferrite powders with the composition $Ni_{0.5}Zn_{0.5}Fe_2O_4$ were prepared by the autocombustion method. The obtained powders were sintered at $800^{\circ}C$, $900^{\circ}C$ and $1,000^{\circ}C$ for 4 h in air atmosphere. The as-prepared and the sintered powders were characterized by X-ray diffraction (XRD), Fourier transform infrared (FT-IR) spectroscopy, and magnetization studies. An increase in the crystallite size and a slight decrease in the lattice constant with sintering temperature were observed, whereas microstrain was observed to be negative for all the samples. Two significant absorption bands in the wave number range of the $400cm^{-1}$ to $600cm^{-1}$ have been observed in the FT-IR spectra for all samples which is the distinctive feature of the spinel ferrites. The force constants were found to vary with sintering temperature, suggesting a cation redistribution and modification in the unit cell of the spinel. The M-H loops indicate smaller coercivity, which is the typical nature of the soft ferrites. The observed variation in the saturation magnetization and coercivity with sintering temperature has been attributed to the role of surface, inhomogeneous cation distribution, and increase in the crystallite size.

Diluted Synthesis of Manocrystalline CeO2 by Mechanical Milling (희석혼합체의 기계적 분쇄에 의한 나노 CeO2의 합성)

  • Lim, Geon-Ja;Kim, Tae-Eun;Lee, Jong-Ho;Lee, Hae-Weon;Rhee, Dong-Joo;Hyun, Sang-Hoon
    • Journal of the Korean Ceramic Society
    • /
    • v.39 no.8
    • /
    • pp.764-768
    • /
    • 2002
  • The nanocrystalline $CeO_2$ was synthesized by mechanical milling and subsequent heat-treatment with the mixture of $Ce(OH)_4$ precursor and diluent, NaCl. Using deionized water, the diluent, NaCl, in the mixture has been easily dissolved out. Diffusion barrier was provided by the diluent during heat-treatment, which suppressed not only the coarsening of primary particle but also the agglormeration between the particles. Crystallite and aggregate size of $CeO_2$ depended on the concentration of diluent, temperature and time of heat-treatment; increased with the temperature and time increases. In case the mixture was heat-treated at high than $600^{\circ}C$, however, the crystallite size was saturated near 20 nm, which was supposed to be due to the densification of diluent.