Browse > Article
http://dx.doi.org/10.3740/MRSK.2016.26.10.570

Fabrication of Spherical SiO2 Powders from Aqueous SiO2 Sol via Ultrasonic Pyrolysis  

Lee, Ji-Hyeon (Ceramic ware Center, Korea Institute of Ceramic Engineering and Technology)
Hwang, Hae-Jin (Division of Material Science and Engineering, Inha University)
Han, Kyu-Sung (Ceramic ware Center, Korea Institute of Ceramic Engineering and Technology)
Hwang, Kwang-Taek (Ceramic ware Center, Korea Institute of Ceramic Engineering and Technology)
Kim, Jin-Ho (Ceramic ware Center, Korea Institute of Ceramic Engineering and Technology)
Publication Information
Korean Journal of Materials Research / v.26, no.10, 2016 , pp. 570-576 More about this Journal
Abstract
Using the ultrasonic pyrolysis method, spherical $SiO_2$ powders were synthesized from aqueous $SiO_2$ sol as a starting material. The effects of pyrolysis conditions such as reaction temperature, $SiO_2$ sol concentration, and physical properties of precursor were investigated for the morphologies of the resulting $SiO_2$ powders. The particle size, shape, and crystallite size of the synthesized $SiO_2$ powders were demonstrated according to the pyrolysis conditions. Generally, the synthesized $SiO_2$ particles were amorphous phase and showed spherical morphology with a smooth surface. It was revealed that increased crystallite size and decreased spherical $SiO_2$ particle size were obtained with increases of the pyrolysis reaction temperature. Also, quantity of spherical $SiO_2$ particles decreased with the decrease in the concentration and surface tension of the precursor.
Keywords
ultrasonic pyrolysis; silica sol; $SiO_2$; spherical powder; raw material;
Citations & Related Records
연도 인용수 순위
  • Reference
1 S. H. Cho, S. Y. Park, C. S. Kim, P. P. Choi and J. K. Park, Colloids. Surf. A., 44, 354 (2014).
2 T. Jesionowski, J. Mater. Process. Tech., 203, 121 (2008).   DOI
3 Y. Sheng, J. Zou, B. Li and M. Tu, J. Wuhan Univ. Tech. Mater. Sci. Ed., 23, 440 (2008).   DOI
4 K. S. Kim, S. S. Kim, S. K. Kim, J. K. Kim and W. S. Kim, J. Korean Inst. Chem. Eng., 38, 817 (2000).
5 T. Jesionowski, Powder. Tech., 127, 56 (2002).   DOI
6 H. J. Jeong, Master's Thesis, p. 2-3, Changwon University, Changwon (2010).
7 Y. C. Kang, K. Y. Jung and S. B. Park, Korean Chem. Eng. Res., 44, 235 (2006).
8 B. S. Bae, S. J. Jung, B. Lee, C. K. Moon and H. L. Choi, J. Ocean Eng. Tech., 24, 86 (2010).
9 C. H. Lim and K. T. Lee, Ceram. Int., 42, 13715 (2016).   DOI
10 Y. H. Cho, Y. C. Kang and J. H. Lee, Sensor. Actuator. B. Chem., 176, 971 (2013).   DOI
11 F. Yatsuyanagi, N. Suzuki, M. Ito and H. Kaidou, Polymer, 42, 9523 (2001).   DOI
12 C. Henrist, C. Toussaint, J. D. Vroede, D. Chatzikyriakou, J. Dewalque, P. Colson, A. Maho and R. Cloots, Microporous Measoporous Mater., 221, 182 (2016).   DOI
13 A. Ginsburg, D. A. Keller, H. N. Barad, K. Rietwyk, Y. Bouhadana, A. Anderson and A. Zaban, Thin Solid Films, 615, 261 (2016).   DOI
14 R. Pandey, S. Yuldashev, H. D. Nguyen, H. C. Jeon and T. W. Kang, Curr. Appl. Phys., 12, S56 (2012).   DOI
15 M. T. T. Camargo, Q. Jacques, L. B. Caliman, J. Miagava, D. Hotza, R. H. R. Castro and D. Gouvea, Mater. Lett., 171, 232 (2016).   DOI
16 A. Baez-Rodriguez, O. Alvarez-Fragoso, M. Garcia-Hipolito, J. Guzman-Mendoza and C. Falcony, Ceram. Int., 41, 7197 (2015).   DOI
17 R. J. Lang, J. Acoust. Soc. Am., 34, 6 (1962).   DOI
18 J. Bogovic, A. Schwinger, S. Stopic, J. Schroeder, V. Gaukel, H. P. Schuchmann and B. Friedrich, Metall-Forschung, 65, 455 (2011).
19 C. Coulart and E. Djurado, J. Eur. Ceram. Soc., 33, 769 (2013).   DOI
20 R. C. Weast, Handbook of Chemistry and Physics, 55th ed., p.F-11, F-43, CRC press, Cleveland, USA (1974).