• 제목/요약/키워드: crystal transition

검색결과 631건 처리시간 0.027초

Roughening Transition of Crystals - Classical Thermodynamic Approach

  • Jo, Wook;Hwang, Nong-Moon;Kim, Doh-Yeon
    • 한국분말야금학회:학술대회논문집
    • /
    • 한국분말야금학회 2006년도 Extended Abstracts of 2006 POWDER METALLURGY World Congress Part 1
    • /
    • pp.60-61
    • /
    • 2006
  • In this contribution, we attempted a theoretical analysis on the validity of the widely-accepted idea that rough and singular surfaces can coexist in a crystal at equilibrium. By manipulating the Cahn and Hoffman capillarity vector, the conclusion that a crystal at equilibrium should be composed either of singular surfaces or of rough ones was reached.

  • PDF

$Mg_{0.16}Zn_{0.84}Te:Co $단결정 성장과 광흡수 특성 (Crystal growth and optical absorption of $Mg_{0.16}Zn_{0.84}Te:Co $ single crystal)

  • 정상조
    • 한국결정성장학회지
    • /
    • 제7권4호
    • /
    • pp.548-554
    • /
    • 1997
  • 수직 Bridgman방법으로 $Mg_{0.18}Zn_{0.84}$Te:Co(Co:0.01 mole%)단결정을 성장시켰다. 성장된 단결정의 결정구조와 광흡수 spectra를 연구하였다. X 선 회절무늬로부터 성장된 단결정의 구조는 cubic구조이었고 격자상수 a=6.1422 $\AA$이었다. 광흡수 측정결과 $Co^{2+}$ 이온에 기인된 $A-band:^4A_2(^4F){\to}^4T_2(^4F),\; B-band:^4A_2(^4F){\to}^4T_1(^4F), C- band:^4A_2(^4F){\to}^4T_1(^4P)$의 intracenter transition과, 흡수단 근처의 charge transfer에 의한 photoionization transition에 관계된 D-band를 550-770 nm의 파장영역에서 관측하였다. 또한 결정장 이론에 의해 결정매개변수(Dq)와 Racah parameter(B)를 결정하였다.

  • PDF

Paraelectric-Ferroelectric Phase Transition of (NH4)2SO4 Single Crystals by 14N NMR

  • Lim, Ae Ran
    • 한국자기공명학회논문지
    • /
    • 제21권2호
    • /
    • pp.63-66
    • /
    • 2017
  • The $^{14}N$ NMR spectra for $(NH_4)_2SO_4$ crystals were obtained near the phase transition temperature $T_C=223K$, and were found to precisely reflect the symmetry change in the crystal at this first-order phase transition. Changes in the resonance frequencies near $T_C$ were attributed to the structural phase transition. In the ferroelectric and paraelectric phases, two inequivalent NH4 groups were distinguished in the $^{14}N$ NMR spectra. The two types, $NH_4$(1) and $NH_4$(2), have slightly different local environments. Consequently, we conclude that the phase transition is caused by the change in the environment of the $^{14}N$ nuclei in the $NH_4$ groups, rather than by the $SO_4$ groups.

${\alpha}-In_2Se_3$ 단결정의 전기적 광학적 특성 연구 (Electrical and Optical Properties of the ${\alpha}-In_2Se_3$ Single Crystal.)

  • 김형곤;김남오;김병철;이우선
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2001년도 하계학술대회 논문집 C
    • /
    • pp.1496-1499
    • /
    • 2001
  • Optical and electrical properties of the $In_2Se_3$ single crystals grown by use of the Bridgman technique were examined in the transition temperature range between $\alpha$-phase and $\beta$-phase. $In_2Se_3$ single crystal has the rhombohedral structure and lattice constants are a=4.025 $\AA$, c=28.771 $\AA$ in C-axis. The transition temperatures of the stoichiometric $In_2Se_3$ single crystal is $10^{-2}{\Omega}cm^{-1}$ according to the specimens. However it varies rapidly in the transition region.

  • PDF

반응성 sputtering법으로 제막된 ZnO : Al 박막의 전기.광학적 특성 (Electrical and optical properties of ZnO:Al thin films prepared by reactive sputtering method)

  • 유병석;유세웅;이정훈
    • 한국결정성장학회지
    • /
    • 제6권4호
    • /
    • pp.480-492
    • /
    • 1996
  • Al이 2 wt% 포함되어 있는 Zn 금속 target을 사용하여 반응성 직류 magnetron sputtering법으로 AZO(Aluminum doped Zinc Oxide) 투명전도막을 제막하였다. 반응성 가스인 산소의 분압과 유량을 조절하여 투과율과 전도도가 모두 우수한 전이영역을 발견하였고 전이영역을 안정적으로 유지하기 위한 증착조건을 찾아냈다. ZnO:Al막의 XRD분석결과 산화막이나 전이영역에서 증착된 막들은 ZnO결정의 (002)면의 peak가 유일하게 관찰되었다.

  • PDF

Effects of Oxidation on the Order-disorder Transition in NiPt Alloy Nano Crystals

  • 서옥균;황재성;송다현;이지연;최정원;이수웅;강현철;노도영
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2012년도 제42회 동계 정기 학술대회 초록집
    • /
    • pp.253-253
    • /
    • 2012
  • The effects of oxidation on the order-disorder transition in NiPt bimetallic alloy crystal have been investigated using in-situ synchrotron x-ray scattering technique. The temperature dependence of the crystal structure and the order parameter were measured during in-situ heating and cooling under vacuum and oxygen environments. The order-disorder transition temperature of NiPt alloy crystals in vacuum was between $615^{\circ}C$ and $627^{\circ}C$. On the other hand under oxygen environment, the transition temperature decreases by about $31^{\circ}C$ after the oxidation. The change of the transition temperature can be explained by the formation of NiO crust on the surface of NiPt crystal, which alters the composition of the Ni and Pt atoms. Since the transition temperature depends sensitively on the Ni-Pt composition, the transition temperature changes as Ni atoms diffuse out to form NiO.

  • PDF

Mechanism of Formation of Three Dimensional Structures of Particles in a Liquid Crystal

  • West, John L.;Zhang, Ke;Liao, Guangxun;Reznikov, Yuri;Andrienko, Denis;Glushchenko, Anatoliy V.
    • Journal of Information Display
    • /
    • 제3권3호
    • /
    • pp.17-23
    • /
    • 2002
  • In this work we report methods of formation of three-dimensional structures of particles in a liquid crystal host. We found that, under the appropriate conditions, the particles are captured and dragged by the moving isotropic/nematic front during the phase transition process. This movement of the particles can be enhanced significantly or suppressed drastically with the influence of an electric field and/or with changing the conditions of the phase transition, such as the rate of cooling. As a result, a wide variety of particle structures can be obtained ranging from a fine-grained cellular structure to stripes of varying periods to a course-grained "root" structures. Changing the properties of the materials, such as the size and density of the particles and the surface anchoring of the liquid crystal at the particle surface, can also be used to control the morphology of the three-dimensional particle network and adjust the physical properties of the resulting dispersions. These particle structures may be used to affect the performance of LCD's much as polymers have been used in the past.

PHASE FIELD MODELING OF CRYSTAL GROWTH

  • Sekerka, Robert F.
    • 한국결정성장학회:학술대회논문집
    • /
    • 한국결정성장학회 1996년도 The 9th KACG Technical Annual Meeting and the 3rd Korea-Japan EMGS (Electronic Materials Growth Symposium)
    • /
    • pp.139-156
    • /
    • 1996
  • The phase field model is becoming the model of choice for the theoretical study of the morphologies of crystals growth from the melt. This model provides an alternative approach to the solution of the classical (sharp interface) model of solidification by introducing a new variable, the phase field, Ø, to identify the phase. The variable Ø takes on constant values in the bulk phases and makes a continuous transition between these values over a thin transition layer that plays the role of the classically sharp interface. This results in Ø being governed by a new partial differential equation(in addition to the PDE's that govern the classical fields, such as temperature and composition) that guarantees (in the asymptotic limit of a suitably thin transition layer) that the appropriate boundary conditions at the crystal-melt interface are satisfied. Thus, one can proceed to solve coupled PDE's without the necessity of explicitly tracking the interface (free boundary) that would be necessary to solve the classical (sharp interface) model. Recent advances in supercomputing and algorithms now enable generation of interesting and valuable results that display most of the fundamental solidification phenomena and processes that are observed experimentally. These include morphological instability, solute trapping, cellular growth, dendritic growth (with anisotropic sidebranching, tip splitting, and coupling to periodic forcing), coarsening, recalescence, eutectic growth, faceting, and texture development. This talk will focus on the fundamental basis of the phase field model in terms of irreversible thermodynamics as well as it computational limitations and prognosis for future improvement. This work is supported by the National Science Foundation under grant DMR 9211276

  • PDF

치과용 지르코니아 도재의 Li2O 첨가에 따른 열팽창계수 변화 (A Change of Thermal Expansion Coefficient according to Li2O-added Porcelain for Dental Zirconia)

  • 한석윤
    • 대한치과기공학회지
    • /
    • 제31권4호
    • /
    • pp.25-30
    • /
    • 2009
  • Zirconia($ZrO_2$) has attracted much attention in science and technology because of its high refractive index, high melting temperature, hardness, low thermal conductivity and corrosion barrier properties. And it is widely used as the dental restoration material because of its esthetic appearance. In this research, we analyzed the particle size and composition of the imported dental porcelain for zirconia. And the glass frit was produced. To decrease the glass transition temperature and softening temperature of the glass frit, $Li_2O$ was added into it and the effect of $Li_2O$ on the firing temperature was researched. Then the glass which contains leucite crystal with a high coefficient of thermal expansion(CTE) was manufactured and it was mixed with the glass frit to control the CTE. The phase composition were analyzed using the X-ray diffraction. The morphologies of the samples were observed by the scanning electron microscope. The 4wt% $Li_2O$-added glass frit has the optimal glass transition temperature and softening temperature. And 6 wt% leucite crystal was mixed with the glass frit to control the CTE. From the experimental results of crystallization, the crystal phase was found only leucite crystal.

  • PDF

Rietveld 법을 이용한 $(Na_{0.3}Sr_{0.7})(Ti_{0.7}M_{0.3})O_3 (M=Ta, Nb)$ 계에서의 결정구조 해석과 상전이 특성 (Phase Transition adn Crystal Structure Analysis Using Rietveld Method in the $(Na_{0.3}Sr_{0.7})(Ti_{0.7}M_{0.3})O_3 (M=Ta, Nb)$ System)

  • 정훈택;김호기
    • 한국세라믹학회지
    • /
    • 제32권5호
    • /
    • pp.582-586
    • /
    • 1995
  • The crystal structures of (Na0.3Sr0.7)(Ti0.7M0.3)O3 (M=Ta, Nb) compounds were determined using the Rietveld method. Due to the tilting of a oxygen octahedron, (Na0.3Sr0.7)(Ti0.7Nb0.3)O3 had a superlattice of doubled a, b and c of simple perovskite. The crystal structure of (Na0.3Sr0.7)(Ti0.7M0.3)O3 was tetragonal with a space group 14/mmm. The crystal structure of (Na0.3Sr0.7)(Ti0.7M0.3)O3 was a cubic with space group Pm3m, in which no tilting of oxygen octahedron was observed. The difference in the oxygen tilting of these two materials was due to the larger covalency of Nb-O bond than that of Ta-O bond, which induced a strong $\pi$Nb0 bonding in (Na0.3Sr0.7)(Ti0.7M0.3)O3. Therefore, the higher transition temperature of (Na0.3Sr0.7)(Ti0.7M0.3)O3 could be related to the larger tilting of oxygen octahedron.

  • PDF