• 제목/요약/키워드: crystal orientation

검색결과 563건 처리시간 0.029초

RF 마그네트론 스퍼터링에 의해 증착된 SMR 구조 FBAR 소자의 Bragg 반사층의 미세구조 특성에 관한 연구 (Micro structural characteristics of Bragg reflector of SMR type FBAR device deposited by RF magnetron sputtering)

  • 박성현;이순범;이능헌;신영화
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2005년도 제36회 하계학술대회 논문집 C
    • /
    • pp.1992-1994
    • /
    • 2005
  • In this study, Bragg reflector was formed as tungsten(W) and $SiO_2$ deposited by RF magnetron sputtering according to variable conditions of RF power and working pressure to apply to the SMR type FBAR device, one of the next generation mobile communication devices. The micro-structural properties such as a crystal orientation, roughness and micro- structure were measured by XRD, AFM and SEM and the best condition of Bragg reflector was elicited with analyzing that results of the thin films about each conditions. Finally, FBAR device was fabricated with applying the Bragg reflector was formed on the best condition and measured the resonance properties and compared other research and considered it.

  • PDF

In-situ Observation of Hydride Stability of Vanadium Alloys in Electron Microscope

  • Ohnuki, S.;Takase, K.;Yashiki, K.;Hamada, K.;Suda, T.;Watanabe, S.
    • Applied Microscopy
    • /
    • 제36권spc1호
    • /
    • pp.57-61
    • /
    • 2006
  • High-resolution microscopy was applied for surveying hydride stability in Vanadium alloys, which are candidate for hydrogen storage materials of advanced hydrogen energy systems. $V_2H$ hydride in V alloys was stable at room temperature under the vacuum condition, but it was decomposed during heating up to $100^{\circ}C$. It was confirmed from HRTEM image and FFT that $V_2H$ has a BCT structure, where hydrogen atoms locate at octahedral sites. Crystal orientation was <110> beta// <110> mat., and lattice strain is about 10%. After the decomposition of the hydride, relatively large lattice expansion was observed in the matrix, which suggests that hydrogen atoms should be trapped by lattice defects and included in the matrix. Intensive electron beam also enhanced the decomposition.

Study of the Microstructural Evolution of Tempered Martensite Ferritic Steel T91 upon Ultrasonic Nanocrystalline Surface Modification

  • He, Yinsheng;Yang, Cheol-Woong;Lee, Je-Hyun;Shin, Keesam
    • Applied Microscopy
    • /
    • 제45권3호
    • /
    • pp.170-176
    • /
    • 2015
  • In this work, various electron microscopy and analysis techniques were used to investigate the microstructural evolution of a 9% Cr tempered martensite ferritic (TMF) steel T91 upon ultrasonic nanocrystalline surface modification (UNSM) treatment. The micro-dimpled surface was analyzed by scanning electron microscopy. The characteristics of plastic deformation and gradient microstructure of the UNSM treated specimens were clearly revealed by crystal orientation mapping of electron backscatter diffraction (EBSD), with flexible use of the inverse pole figure, image quality, and grain boundary misorientation images. Transmission electron microscope (TEM) observation of the specimens at different depths showed the formation of dislocations, dense dislocation walls, subgrains, and grains in the lower, middle, upper, and top layers of the treated specimens. Refinement of the $M_{23}C_6$ precipitates was also observed, the size and the number density of which were found to decrease as depth from the top surface decreased. The complex microstructure and microstructural evolution of the TMF steel samples upon the UNSM treatment were well-characterized by combined use of EBSD and TEM techniques.

FBAR 소자의 Bragg 반사층의 $SiO_2$ 박막 특성에 관한 연구 (Structure characteristics of $SiO_2$ thin film of the FBAR Bragg reflector)

  • 이순범;박성현;이능헌;신영화
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2005년도 하계학술대회 논문집 Vol.6
    • /
    • pp.377-378
    • /
    • 2005
  • In this study, $SiO_2$ thin film was deposited on variable conditions of the RF power and working pressure by RF magnetron sputtering to apply to the Bragg reflector of the SMR type FBAR device. A crystal orientation and microstructure of $SiO_2$ thin film was studied by using the XRD, AFM and SEM. The best condition was obtained through analyzing the structural characteristics of thin film. Finally, FBAR device was fabricated with applying the best condition of $SiO_2$ thin film and the resonant characteristics was investigated by network analyzer to verify application possibility as a efficient device.

  • PDF

다양한 기판위에 성장한 1차원 ZnO 나노막대의 특성평가 및 미세구조 분석 (Microstructural analysis and characterization of 1-D ZnO nanorods grown on various substrates)

  • 공보현;김동찬;조형균
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2006년도 하계학술대회 논문집 Vol.7
    • /
    • pp.116-117
    • /
    • 2006
  • I-D ZnO nanostructures were fabricated by thermal evaporation method on Si(100), GaN and $Al_2O_3$ substrates without a catalyst at the reaction temperature of $700^{\circ}C$. Only pure Zn powder was used as a source material and Ar was used as a carrier gas. The shape and growth direction of synthesized ZnO nanostructures is determined by the crystal structure and the lattice mismatch between ZnO and substrates. The ZnO nanostructure on Si substrate were inclined regardless of their substrate orientation. The origin of ZnO/Si interface is highly lattice-mismatched and the surface of the Si substrate inevitably has the $SiO_2$ layer. The ZnO nanostructure on the $Al_2O_3$ substrate was synthesized into the rod shape and grown into particular direction. For the GaN substrate, however, ZnO nanostructure with the honeycomb-like shape was vertically grown, owing to the similar lattice parameter with GaN substrate.

  • PDF

Non-polar and Semi-polar InGaN LED Growth on Sapphire Substrate

  • 남옥현
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2009년도 제38회 동계학술대회 초록집
    • /
    • pp.51-51
    • /
    • 2010
  • Group III-nitride semiconductors have been widely studied as the materials for growth of light emitting devices. Currently, GaN devices are predominantly grown in the (0001) c-plane orientation. However, in case of using polar substrate, an important physical problem of nitride semiconductors with the wurtzite crystal structure is their spontaneous electrical polarization. An alternative method of reducing polarization effects is to grow on non-polar planes or semi-polar planes. However, non-polar and semipolar GaN grown onto r-plane and m-plane sapphire, respectively, basically have numerous defects density compared with c-plane GaN. The purpose of our work is to reduce these defects in non-polar and semi-polar GaN and to fabricate high efficiency LED on non/semi-polar substrate. Non-polar and semi-polar GaN layers were grown onto patterned sapphire substrates (PSS) and nano-porous GaN/sapphire substrates, respectively. Using PSS with the hemispherical patterns, we could achieve high luminous intensity. In case of semi-polar GaN, photo-enhanced electrochemical etching (PEC) was applied to make porous GaN substrates, and semi-polar GaN was grown onto nano-porous substrates. Our results showed the improvement of device characteristics as well as micro-structural and optical properties of non-polar and semi-polar GaN. Patterning and nano-porous etching technologies will be promising for the fabrication of high efficiency non-polar and semi-polar InGaN LED on sapphire substrate.

  • PDF

음향재료신호를 이용한 강소성변형된 알루미늄 5052 합금의 탄성계수 측정 (Determination of Elastic Modulus of Equal-Channel-Angular-Pressed Aluminum 5052 Alloy by Acoustic Material Signature)

  • 김정석;박익근;장경영
    • 비파괴검사학회지
    • /
    • 제30권2호
    • /
    • pp.146-154
    • /
    • 2010
  • 알루미늄 5052 합금의 탄성특성에 대한 ECAP 강소성변형과 어닐링효과를 연구하였다. 알루미늄 5052 합금은 용체화 처리 후 ECAP 가공하고 어닐링처리를 수행하였다. 탄성계수는 기존의 인장시험과 나노압입시험을 통해 측정하고 음향현미경의 음향재료신호를 이용하여 시료의 표변에서 탄성계수를 측정하였다. 기존의 시험법으로는 불가능한 소성변형과 열처리에 따른 탄성계수의 변화를 음향재료신호를 이용하여 성공적으로 측정하였고 개개의 결정립에서도 결정방위에 의존하는 탄성계수를 얻었다.

Tribology특성 향상을 위한 Ag 박막의 형성과 평가에 관한 연구 (A Study on Formation and Evaluation of he Thin Films for Improvement of Tribology Properties)

  • 이경황;이상기;송복한;정병진;박창남;문경만;이명훈
    • 한국표면공학회지
    • /
    • 제33권5호
    • /
    • pp.319-328
    • /
    • 2000
  • Silver is known to have such characteristics as low shear strength, good transfer-film forming tendency, and good corrosion resistance. Silver thin films have been prepared by ion plating of physical vapour deposition (PVD) using both argon gas pressure and bias voltage of processing condition. After the silver films were prepared, the properties in them were examined by gas pressure and bias voltage of substrate. Their morphology and crystal orientation were investigated by scanning electron microscopy (SEM) and X-ray diffractor. The properties of film were, also, studied to relate with morphology, X-ray diffraction pattern, and friction coefficient at vacuum ambient. The friction coefficient was stabilized remarkably on deposited films with increasing argon pressure for deposition. Also, the effect of increasing of the bias voltage for deposition resulted in lower friction coefficient and stability in $1.7$\times$10^{-4}$ torr. On the contrary, behavior of friction coefficient was stabilized on deposited films with decreasing the bias voltage in $1.7$\times$10^{-5}$ torr for deposition.

  • PDF

Chain orientation and Degradation Behavior of Poly[(R)-3-hydroxybutyrate] Lamellar Crystals

  • 이원기;조남주;하창식
    • Bulletin of the Korean Chemical Society
    • /
    • 제22권8호
    • /
    • pp.872-876
    • /
    • 2001
  • Topological changes caused by the alkaline and enzymatic attacks of solution-grown, chain-folded lamellar crystals (SGCs) of poly[(R)-3-hydroxybutyrate] P(3HB) have been studied in order to investigate the chain-folding structure in P(3HB) crystal regions. NaOH and an extracellular PHB depolymerase purified from Alcaligenes faecalis T1 were used for alkaline and enzymatic hydrolysis, respectively. The measurements were performed on crystals attached to a substrate which is inactive to degradation mediums. Both alkaline and enzymatic attacks lead to a breakup of the lamellar crystals along the crystallographic b-axis during initial erosion. Since hydrolysis preferentially occurs in amorphous regions, this morphological result reflects relatively loosely packed chains in core parts of lamellar crystals. Additionally, it was supported by the ridge formation along the b-axis in the lamellar crystals after thermal treatment at a low temperature because of the thermally sensitive nature of the loosely packed chains in lamellar crystals. However, the alkaline hydrolysis accompanied the chain erosions or scissions in quasi-regular folded lamellar surfaces due to smaller size of alkaline ions in comparison to the enzyme, resulting in the decrease of molecular weight.

Synthesis and Cation Binding Properties of Triester Calix[4]arenes and Calix[4]quinones

  • 남계천;강성옥;전종철
    • Bulletin of the Korean Chemical Society
    • /
    • 제18권10호
    • /
    • pp.1050-1052
    • /
    • 1997
  • The complexes M(CO)4-1,2-(PPh2)2-1,2-C2B10H10 (M=Cr 2a, Mo 2b, W 2c) have been prepared in good yields from readily available bis-diphenylphosphino-o-carboranyl ligand, closo-1,2-(PPh2)2-1,2-C2B10H10 (1), by direct reaction with Group Ⅵ metal carbonyls. The infrared spectra of the complexes indicate that there is an octahedral disposition of chelate bis-diphenylphosphino-o-carboranyl ligand around the metal atom. The crystal structure of 2a was determined by X-ray diffraction. Complex 2a crystallizes in the monoclinic space group P21/n with cell parameters a = 12.2360(7), b = 17.156(1), c = 16.2040(6) Å, V = 3354.1(3) Å3, and Z =4. Of the reflections measured a total of 2514 unique reflections with F2 > 3σ(F2) was used during subsequent structure refinement. Refinement converged to R1 = 0.066 and R2 = 0.071. Structural studies showed that the chromium atom had a slightly distorted pseudo-octahedral configuration about the metal center with two phosphine groups of o-carborane occupying the equatorial plane cis-orientation to each other. These metal carbonyl complexes are rapidly converted to the corresponding metal carbene complexes, [(CO)3M=C(OCH3)(CH3)]-1,2-(PPh2)2-1,2-C2B10H10 (M= Cr 3a, Mo 3b, W 3c), via alkylation with methyllithium followed by O-methylation with CF3SO3CH3.