• 제목/요약/키워드: crystal defect

검색결과 283건 처리시간 0.028초

Synthesis of Semiconducting $KTaO_3$ Thin films

  • Bae, Hyung-Jin;Ku, Jayl;Ahn, Tae-Won;Lee, Won-Seok
    • Proceedings of the IEEK Conference
    • /
    • 대한전자공학회 2005년도 추계종합학술대회
    • /
    • pp.1265-1268
    • /
    • 2005
  • In this study, the synthesis and semiconducting properties of cation and defect-doped $KTaO_3$ film is reported. $KTaO_3$ is an important material for optoelectronic and tunable microwave applications. It is an incipient ferroelectric with a cubic structure that becomes ferroelectric when doped with Nb. While numerous studies have investigated the thin-film growth of semiconducting perovskites, little is reported about semiconducting $KTaO_3$ thin films. In this work, the films were grown on (001) MgO single crystal substrates using pulsed-laser deposition. Semiconducting behavior is achieved by inducing oxygen vacancies in the $KTaO_3$ lattice via growth in a hydrogen atmosphere. The resistivity of semiconducting $KTaO_3:Ca$ films was as low as 10cm, and n-type semiconducting behavior was indicated. Hall mobility and carrier concentration were $0.27cm^2/Vs$ and $3.21018cm^{-3}$, respectively. Crystallinity and microstructure of the $KTaO_3:Ca$ films were examined using X-ray diffraction and field-emission scanning microscopy.

  • PDF

Optimal Water-cooling Tube Design for both Defect Free Process Operation and Energy Minimization in Czochralski Process (무결정결함영역을 유지하면서 에너지를 절감하는 초크랄스키 실리콘 단결정 성장로 수냉관 최적 설계)

  • Chae, Kang Ho;Cho, Na Yeong;Cho, Min Je;Jung, Hyeon Jun;Jung, Jae Hak;Sung, Su Whan;Yook, Young Jin
    • Current Photovoltaic Research
    • /
    • 제6권2호
    • /
    • pp.49-55
    • /
    • 2018
  • Recently solar cell industry needs the optimal design of Czochralski process for low cost high quality silicon mono crystalline ingot. Because market needs both high efficient solar cell and similar cost with multi-crystalline Si ingot. For cost reduction in Czochralski process, first of all energy reduction should be completed because Czochralski process is high energy consumption process. For this purpose we studied optimal water-cooling tube design and simultaneously we also check the quality of ingot with Von mises stress and V(pull speed of ingot)/G(temperature gradient to the crystallization) values. At this research we used $CG-Sim^{(R)}$ S/W package and finally we got improved water-cooling tube design than normally used process in present industry. The optimal water-cooling tube length should be 200mm. The result will be adopted at real industry.

Effect of Thermal Annealing and Growth of ZnO:Li Thin Film by Pulesd Laser Deposition (펄스 레이저 증착법에 의한 ZnO:Li 박막 성장과 열처리 효과)

  • Hong Kwangjoon
    • Korean Journal of Materials Research
    • /
    • 제15권5호
    • /
    • pp.293-300
    • /
    • 2005
  • ZnO:Li epilayers were synthesized on sapphire substrates by the pulesd laser deposition (PLD) after the surface of the ZnO:Li sintered pellet was irradiated by the ArF (193 nm) excimer laser. The growth temperature was fixed at $400^{\circ}C$. The crystalline structure of epilayers was investigated by the photoluminescence (PL) and double crystal X-ray diffraction (DCXD). The carrier density and mobility of epilayers measured by van der Pauw-Hall method are $2.69\times10cm^{-3}$ and $52.137cm^2/V{\cdot}s$ at 293 K, respectively. The temperature dependence of the energy band gap of epilayers obtained from the absorption spectra is well described by the Varshni's relation, $E_g(T)=3.5128eV{\cdot}(9.51\times10^{-4}eV/K)T^2/(T+280K)$. After the as-grown ZnO:Li epilayer was annealed in Zn atmospheres, oxygen and vaccum the origin of point defects of ZnO:Li has been investigated by PL at 10 K. The Peaks of native defects of $V_{zn},\;V_o,\;Zn_{int},\;and\;O_{int}$ showned on PL spectrum are classified as a donors or accepters type. We confirm that $ZnO:Li/Al_2O_3$ in vacuum do not form the native defects because ZnO:Li epilayers in vacuum existe in the form of stable bonds.

Investigation of The New LC Alignment Film using $TiO_2$ thin film ($TiO_2$ 박막을 적용한 새로운 액정배향막의 연구)

  • Kim, Sang-Hoon;Kim, Byoung-Yong;Kang, Dong-Hun;Han, Jin-Woo;Kim, Sung-Yeon;Myoung, Jae-Min;Oh, Yong-Cheul;Seo, Dae-Shik
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 한국전기전자재료학회 2006년도 추계학술대회 논문집 Vol.19
    • /
    • pp.280-281
    • /
    • 2006
  • We studied the nematic liquid crystal (NLC) aligning capabilities using the new alignment material of a Titanium dioxide ($TiO_2$) thin film by rf magnetron sputtering system for 15min under various rf power. A very low pretilt angle by ion beam exposure on the $TiO_2$ thin film was measured. A good LC alignment by the ion beam alignment method on the $TiO_2$ thin film surface was observed at annealing temperature of $200^{\circ}C$, and the alignment defect of the NLC was observed above annealing temperature of $250^{\circ}C$. Consequently, the low NLC pretilt angle and the good thermal stability of LC alignment by the ion beam alignment method on the $TiO_2$ thin film by sputter method as various rf power condition can be achieved.

  • PDF

ZnO Nanoparticles with Hexagonal Cone, Hexagonal Plate, and Rod Shapes: Synthesis and Characterization

  • Kim, Sun-Young;Lee, In-Su;Yeon, Yun-Seon;Park, Seung-Min;Song, Jae-Kyu
    • Bulletin of the Korean Chemical Society
    • /
    • 제29권10호
    • /
    • pp.1960-1964
    • /
    • 2008
  • The roles of coordinating ligands (TOPO, OA, HDA, and TDPA) for the synthesis of ZnO nanoparticles are investigated. Various shapes (hexagonal cone, hexagonal plate, and rod) and sizes (5-100 nm) of ZnO nanoparticles are prepared in relation to the coordinating ligands. The hexagonal shapes ($\leq$ 100 nm) are synthesized with TOPO and OA, while smaller size nanorods (5 ${\times}$ 30 nm) are with TOPO and TDPA. The relative intensities of two distinctive emission bands centered at 385 and 500 nm, which are related to the exciton and defect states, respectively, depend on the crystal qualities of ZnO nanoparticles affected by the coordinating ligands. The intense UV emissions with the reduced visible emissions are found in the monodisperse nanoparticles such as hexagonal cones and nanorods, suggesting that the monodispersity as well as the crystallinity is closely related to the coordinating ligands. The blue-shift of photoluminescence and absorption edge is observed in the nanorods, because the sizes of the nanorods are in the quantum confinement regime.

Study on LC Aligning Capability by the UV Alignment Method on a-C:H Thin Films

  • Jo, Yong-Min;Park, Chang-Joon;Hwang, Jeoung-Yeon;Seo, Dae-Shik;Rho, Soon-Joon;Baik, Hong-Koo
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2003년도 International Meeting on Information Display
    • /
    • pp.500-503
    • /
    • 2003
  • We studied the nematic liquid crystal (NLC) aligning capabilities by the UV alignment method on a a-C:H thin film surface. A good LC alignment by UV exposure on the a-C.H thin film surface at 200 ${\AA}$ of layer thickness was achieved. Also, a good LC alignment by the UV alignment method on the a-C:H thin film surface was observed at annealing temperature of 180 $^{\circ}C$. However, the alignment defect of the NLC was observed above annealing temperature of 200 $^{\circ}C$. Consequently, the good thermal stability of LC alignment by the UV alignment method on the a-C:H thin film surface can be achieved.

  • PDF

Current-voltage Characteristics of Proton Irradiated NPT Type Pourer Diode (양성자가 주입된 NPT형 전력용 다이오드의 전류-전압 특성)

  • Kim Byoung-Gil;Baek Jong-Mu;Lee Jae-Sung;Bae Young-Ho
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • 제19권1호
    • /
    • pp.7-12
    • /
    • 2006
  • Local minority carrier lifetime control by means of particle irradiation is an useful technology for Production of modern silicon Power devices. Crystal damage due to ion irradiation can be easily localized by choosing appropriate irradiation energy and minority tarrier lifetime can be reduced locally only in the damaged layer. In this work, proton irradiation technology was used for improving the switching characteristics of a un diode. The irradiation was carried out with various energy and dose condition. The device was characterized by current-voltage, capacitance-voltage, and reverse recovery time measurements. Forward voltage drop was increased to 1.1 V at forward current of 5 A, which was $120\%$ of its original device. Reverse leakage current was 64 nA at reverse voltage of 100 V, and reverse breakdown voltage was 670 V which was the same voltage as original device without irradiation. The reverse recovery time of device was reduced to about $20\%$ compared to that of original device without irradiation.

Copper, aluminum based metallization for display applications (표시소자 응용을 위한 copper, aluminum 박막의 성장과 특성)

  • 김형택;배선기
    • Electrical & Electronic Materials
    • /
    • 제8권3호
    • /
    • pp.340-351
    • /
    • 1995
  • Electrical, physical and optical properties of Aluminum(Al), Copper(Cu) thin films were investigated in order to establish the optimum sputtering parameters in Liquid Crystal Display (LCD) panel applications. DC-magnetron sputtered film on coming 7059 samples were fabricated with variations of deposition power densities, deposition pressures and substrate temperatures. Low resistivity films(AI;2.80 .mu..ohm.-cm, Cu:1.84 .mu..ohm-cm),which lower than the reported values, were obtained under sputtering parameters of power density(250W), substrate temperature(450-530.deg. C) and 5*10$\^$-3/ Torr deposition pressure. Expected columnar growth and stable grain growth of both films was observed through the Scanning Electron Microscope(SEM) micrographs. Dependency of the applicable defect-free film density upon depositon power and temperature was also characterized. Not too noticable variations in X-ray diffraction patterns were remarked under the alterations of sputtering parameters. High optical reflectivities of Al, Cu films, approximately 70-90 %, showed high degree of surface flatness.

  • PDF

Compensation in LPLEC GaAs Single Crystals (LPLEC법으로 성장시킨 GaAs 단결정의 Compensation)

  • Ko, Kyung Hyun
    • Analytical Science and Technology
    • /
    • 제5권2호
    • /
    • pp.213-216
    • /
    • 1992
  • Semiinsulating GaAs crystals employing LPLEC technique should be grown from the Ga-rich melt due to a very low incorporation of unintentional impurities such as carbon (<$10^{15}cm^{-3}$). High resisitivity of this material can be derived from the balanced compensation among not only EL2 deep donors and carbon acceptors but also H1 double charge native acceptors(Ev + 77meV, Ev + 200 meV) and H2 native acceptors(Ev + 68 meV). Considering of the complicated compensation mechanism using statistical calculation of the electron occupancy of each level, SI GaAs crystal with low impurity contents(<$10^{15}cm^{-3}$) can be successfully obtained by maintaining the melt composition around 0.45 As mole fraction.

  • PDF

Field Emission Characteristics of Deffctive Diamond Films

  • Koh, Ken-Ha;Park, Kyung-Ho;Lee, Soon-Il
    • Journal of the Korean Vacuum Society
    • /
    • 제7권s1호
    • /
    • pp.160-166
    • /
    • 1998
  • The field emission characteristics of defective diamond films grown by microwave plasma enhanced chemical vapor deposition (MPECVD) have been studied. X-ray diffraction, the poor crystal quality and/or small grain sizes of the diamond phase and the inclusion of the non-diamond carbon phases in these films have been condirmed by raman spectroscopy, scanning electron microscopy, atomic force microscopy, and the reflectance measurements. The degrees of the film defectiveness and the emission characteristics were dependent on the methane concentration. Current-versus-voltage measurements have demonstrated that the defective diamond films have good electron emission characteristics. characteristics strongly suggests the defect-related electron-emission mechanism. The defective diamond films deposited on Si substrates show the field emission current density of 1$\mu\textrm{A}/\textrm{cm}^2$ and 1mA/$\textrm{cm}^2$ have been measured at electric fields as low as 4.5V/$\mu\textrm{m}$ and 7.6V/$\mu\textrm{m}$, respectively. We also observed the similar emission characteristics from the defective diamond film deposited on Cr/Si substrate and could decrease the deposition temperature to $600^{\circ}C$.

  • PDF