Browse > Article
http://dx.doi.org/10.3740/MRSK.2005.15.5.293

Effect of Thermal Annealing and Growth of ZnO:Li Thin Film by Pulesd Laser Deposition  

Hong Kwangjoon (Department of Physics, Chosun University)
Publication Information
Korean Journal of Materials Research / v.15, no.5, 2005 , pp. 293-300 More about this Journal
Abstract
ZnO:Li epilayers were synthesized on sapphire substrates by the pulesd laser deposition (PLD) after the surface of the ZnO:Li sintered pellet was irradiated by the ArF (193 nm) excimer laser. The growth temperature was fixed at $400^{\circ}C$. The crystalline structure of epilayers was investigated by the photoluminescence (PL) and double crystal X-ray diffraction (DCXD). The carrier density and mobility of epilayers measured by van der Pauw-Hall method are $2.69\times10cm^{-3}$ and $52.137cm^2/V{\cdot}s$ at 293 K, respectively. The temperature dependence of the energy band gap of epilayers obtained from the absorption spectra is well described by the Varshni's relation, $E_g(T)=3.5128eV{\cdot}(9.51\times10^{-4}eV/K)T^2/(T+280K)$. After the as-grown ZnO:Li epilayer was annealed in Zn atmospheres, oxygen and vaccum the origin of point defects of ZnO:Li has been investigated by PL at 10 K. The Peaks of native defects of $V_{zn},\;V_o,\;Zn_{int},\;and\;O_{int}$ showned on PL spectrum are classified as a donors or accepters type. We confirm that $ZnO:Li/Al_2O_3$ in vacuum do not form the native defects because ZnO:Li epilayers in vacuum existe in the form of stable bonds.
Keywords
ZnO:Li epilayers; pulesd laser deposition; annealing; Hall effect point defect; photoluminescence;
Citations & Related Records
연도 인용수 순위
  • Reference
1 D. D. Sell, S. E. Stokowski, R. Dingle and J. V. Dilorenzo, Phys. Rev. B7, 195, 4568 (1973)   DOI
2 R. E. Halsted and M. Aven, Phys. Rev. Lett.,. 14(64), 2034 (1965)   DOI
3 J. L. Shay and J. H. Wernick, J. Phys. Soc., Jpn., 33(6), 1561 (1972)   DOI   ScienceOn
4 K. Hummer, Phys. Stat. Sol., 56, 249 (1973)   DOI   ScienceOn
5 M. Labeau, P. Rey, J. C. Joubert and A. Delabouglise. G, 213, 94 (1992)   DOI   ScienceOn
6 Y. P. Varshni, Physica, 34, 149 (1967)   DOI   ScienceOn
7 X. Wang, S. Yang, J. Wang, M. Li, X. Jiang, G. Du, X. Liu, R.P.H. Chang, J. Crystal Growth, 226, 123 (2001.)   DOI   ScienceOn
8 H. Fujita, J. Phys. Soc., 20, 109 (1965)   DOI
9 Y. Nakata, T. Okada and M. Maeda, Appl. Surf. Sci., 197/198, 368 (2002)   DOI   ScienceOn
10 M. Tammenmaa and L. Niinisto, J. Crystal Growth, 216, 326 (2000)   DOI   ScienceOn
11 S. Takada, J. Appl. Phys., 73, 4739 (1973)   DOI   ScienceOn
12 M. G. Ambia, M.N. Islam and M. O. Hakim, Solar Energy Materials and Solar Cells, 28, 103 (1992)   DOI   ScienceOn
13 T, Mitsuyu, S. Ono and K. Wasa, J. Appl. Phys., 44, 1061 (1973)   DOI   ScienceOn
14 M. S. Wu, A. Azuma and N. Kawabata. J. Appl. Phys., 62(6), 2482 (1987)   DOI
15 M. H. Koch, P. Y. Timbrell, R. N. Lamb, Semicond. sci. Technol., 10, 1523 (1995)   DOI   ScienceOn
16 K. Vanheusden, C. H. Seuger, W. L. Wareen, and M. J. Hampden-smith, J. Lumin,. 75, 11 (1979)   DOI   ScienceOn
17 M. Sugiura, Y. Nakashima and T. Nakasaka, Appl. Surf. Sci., 197/198, 472 (2002)   DOI   ScienceOn
18 K. M. Kondo, C. T. Ikeda and T. Kasqunami. Jpn. J. Appl. Phys., Suppl. 29(1), 159 (1990)   DOI