• Title/Summary/Keyword: cryptoxanthin

Search Result 59, Processing Time 0.03 seconds

Effect of Harvesting Season on the 6-Cryptoxanthin in Shiranuhi Mandarin Fruit Cultivated in Jeju Island

  • Heo, Ji-Man;Kim, Do-Hyun;Kim, In-Jung;Lee, Sam-Pin;Kim, Chan-Shick
    • Preventive Nutrition and Food Science
    • /
    • v.10 no.3
    • /
    • pp.219-223
    • /
    • 2005
  • [ $\beta-Cryptoxanthin$ ] content was determined in Shiranuhi mandarin fruits harvested at monthly intervals from October to February in Jeju Island. Crude carotenoids were extracted from both peel and flesh of Shiranuhi mandarin fruits and analyzed using TLC and HPLC; $\beta-cryptoxanthin$ was indicated the Rr value of 3.2 and retention time of 23 min, respectively. $\beta-Cryptoxanthin$ contents in both peel and flesh were increased gradually as the citrus fruits ripened fully until harvesting season (February). According to the harvesting time, $\beta-cryptoxanthin$ contents in the peel were $0.15\;mg\%\;(October),\;0.28\;mg\%\;(November),\;0.38\;mg\%\;(December),\;1.23\;mg\%\;(January),\;and\;1.71\;mg\%\;(February).$In the flesh, $\beta-cryptoxanthin$ contents were lower than those of peels, having $0.06\;mg\%\;(October),\;0.08\;mg\%\;(November),\;0.19\;mg\%\;(December),\;0.26\;mg\%\;(January),\;and\;0.65\;mg\%\;(February).$ These results demonstrate that $\beta-cryptoxanthin$ in Shiranuhi mandarin fruits accumulated during ripening of the citrus fruits. In particular, the peels had much higher concentrations of $\beta-cryptoxanthin$ and have potential for use as a functional ingredient.

Comparison of Dietary Carotenoids Metabolism and Effects to Improve the Body Color of Cultured Fresh-water Fishes and Marine Fishes (양식 담수어 및 해산어의 사료 Carotenoids 대사의 비교와 체색개선에 미치는 영향)

  • Ha, Bong-Seuk;Kweon, Moon-Jeong;Park, Mi-Yeon;Baek, Sung-Han;Kim, Soo-Young;Baek, In-Ok;Kang, Seok-Joong
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.26 no.2
    • /
    • pp.270-284
    • /
    • 1997
  • Effects of dietary carotenoids were investigated on the metaboβsm and body pigmentation of rainbow trout(Salmo gairdneri), masu salmon(Oncorhynchus macrostomos), eel(Anguilla japonica), rock fish(Sebastes inermis) and black rock fish(Sebastes schlegeli). Three weeks later after depletion, these fishes were fed diet supplemented with ${\beta}-carotene$, lutein, canthaxanthin', astaxanthin or ${\beta}-apo-8'-carotenal$ for 4 to 5 weeks, respectively. Carotenoids distributed to and changed in integument were analyzed. In the integument of rainbow trout. zeaxanthin, ${\beta}-carotene$ and canthaxanthin were found to be the major carotenoids, while lutein, isocryptoxanthin and salmoxanthin were the minor carotenoids. In the integument of masu salmon, zeaxanthin was found to be the major carotenoids, while triol, lutein, tunaxanthin, ${\beta}-carotene$, ${\beta}-cryptoxanthin$ and canthaxanthin were the minor carotenoids. In the integument of eel, ${\beta}-carotene$ was found to be the major carotenoids, while lutein, zeaxanthin and ${\beta}-cryptoxanthin$ were the minor carotenoids. In the integument of rock fish, zeaxanthin, ${\beta}-carotene$, tunaxanthin$(A{\sim}C)$ and lutein were found to be the major carotenoids, while ${\beta}-cryptoxanthin$, ${\alpha}-cryptoxanthin$ and astaxanthin were the minor carotenoids. Likely in the integument of black rock fish, ${\beta}-carotene$, astaxanthin and zeaxanthin were found to be the major carotenoids, whereas ${\alpha}-cryptoxanthin$, ${\beta}-cryptoxanthin$, lutein and canthaxanthin were the minor contributor. The efficacy of body pigmentation by the accumulation of carotenoids in the integument of rainbow trout and masu salmon were the most effectively shown in the canthaxanthin group and of eel, rock fish and black rock fish were the most effectively shown in the lutein group. Based on these results in the integument of each fish, dietary carotenoids were presumably biotransformed via oxidative and reductive pathways. In the rainbow trout, ${\beta}-carotene$ was oxidized to astaxanthin via successively isocryptoxanthin, echinenone and canthaxanthin. Lutein was oxidized to canthaxanthin. Canthaxanthin was reduced to ${\beta}-carotene$ via isozeaxanthin, and astaxanthin was reduced to zeaxanthin via triol. In the masu salmon, ${\beta}-carotene$ was oxidized to zeaxanthin. Lutein was reduced to zeaxanthin via tunaxanthin. Canthaxanthin was reduced to zeaxanthin via ${\beta}-carotene$. and astaxanthin was reduced to zeaxanthin via triol. In the eel, ${\beta}-carotene$ and lutein were directly deposited but canthaxanthin was reduced to ${\beta}-carotene$, and cholesterol lowering effect by Meju supplementation might be resulted from the modulation of fecal axanthin, astaxanthin and ${\beta}-apo-8'-carotenal$ were oxidized and reduced to tunaxanthin via zeaxanthin. In the black roch fish, ${\beta}-carotene$ was oxidized to ${\beta}-cryptoxanthin$. Lutein was reduced to ${\beta}-carotene$ via ${\alpha}-cryptoxanthin$. Canthaxanthin was reduced to ${\alpha}-cryptoxanthin$ via successively ${\beta}-cryptoxanthin$ and zeaxanthin. Astaxanthin converted to tunaxanthin via isocryptoxanthin and zeaxanthin, and ${\beta}-apo-8'-carotenal$ was reduced to ${\alpha}-cryptoxanthin$ via ${\beta}-cryptoxanthin$ and zeaxanthin.

  • PDF

Changes in ${\beta}$-Cryptoxanthin Contents of Citrus unshiu Markovich Fruits Ripened in Greenhouse versus Open Field Cultivation

  • Heo, Ji-Man;Lee, Sam-Pin;Song, Kwan-Jeong;Kim, Chan-Shick
    • Food Science and Biotechnology
    • /
    • v.14 no.4
    • /
    • pp.533-536
    • /
    • 2005
  • [ ${\beta}$-Cryptoxanthin ] contents were determined from Citrus unshiu Markovich fruits grown in a greenhouse and open field of Jeju Island, off the southern coast of Korea. In a greenhouse and open field, the ${\beta}$-cryptoxanthin content in the peel was greatly increased by harvesting citrus fruits in the late season from August through November. However, ${\beta}$-cryptoxanthin content in the flesh was gradually increased and was superior to that of the citrus fruits grown in a greenhouse. ${\beta}$-Cryptoxanthin was efficiently purified from the flesh of citrus fruits harvested in the late harvesting season in November. The ${\beta}$-cryptoxanthin contents in the peel and flesh of citrus fruits harvested from a greenhouse in November were 0.89 mg% and 0.35 mg%, respectively, and in that obtained from an open field were 1.12 mg% and 0.35 mg%, respectively.

Comparison of Carotenoid Pigments in Chinese muddy loach, Misgurnus mizolepis, and Muddy loach, Misgurnus anguillicaudatus, in the Subfamily Cobitidae (미꾸리아과에 속하는 미꾸라지와 미꾸리의 Carotenoid 색소성분의 비교)

  • PARK Eun-Sook;KANG Dong-Soo;HA Bong-Seuk
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.27 no.3
    • /
    • pp.265-271
    • /
    • 1994
  • Differences in carotenoid composition in the integuments of wild and cultured chinese muddy loach Misgurnus mizolepis and muddy loach Misgurnus anguillicaudatus were compared. Total carotenoid contents in the integuments of the wild and cultured chinese muddy loach were $4.76mg\%\;and\;3.43mg\%$, respectively. The important carotenoids in the integuments of the wild chinese muddy loach were lutein($30.5\%$), ${\beta}$-cryptoxanthin($24.6\%$), ${\beta}$-carotene($20.6\%$) and cynthiaxanthin($11.7\%$). In addition, zeaxanthin($4.7\%$), tunaxanthin ($4.5\%$), and a-cryptoxanthin($1.0\%$) were present in small amounts. In the integuments of the cultured chinese muddy loach, lutein($35.4\%$), ${\beta}$-cryptoxanthin($17.9\%$), cynthiaxanthin($16.0\%$) and ${\beta}$-carotene($12.7\%$) were present as important carotenoids. In addition, zeaxanthin($8.1\%$), tunaxanthin($5.0\%$), a-cryptoxanthin($0.9\%$) were found in small amounts. Total carotenoid contents in the integuments of the wild and cultured muddy loach were $4.00mg\%\;and\;2.99mg\%$, respectively. The important carotenoids in the integuments of the wild muddy loach were lutein($32.9\%$), ${\beta}$-cryptoxanthin($18.8\%$), cynthiaxanthin($17.0\%$) and ${\beta}$-carotene($15.1\%$). In addition, zeaxanthin($6.5\%$), tunaxanthin($6.0\%$) and a-cryptoxanthin($1.5\%$) were found in small amounts. In the integuments of the cultured muddy loach, lutein($51.8\%$), cynthiaxanthin($19.9\%$) and ${\beta}$-cryptoxanthin($10.8\%$) were observed as important carotenoids. In addition, ${\beta}$-carotene($5.0\%$), zeaxanthin($4.8\%$), tunaxanthin($4.5\%$) and a-cryptoxanthin($0.2\%$) were found in small amounts.

  • PDF

Comparison of Carotenoid Pigments on Manchurian Trout, Brachymystax lenok and Masu Salmon, Oncorhynchus macrostomus in the Family Salmonidae (연어과에 속하는 열목어와 산천어의 Carotenoid 색소성분의 비교)

  • BAEK Sung-Han;HA Bong-Seuk
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.31 no.2
    • /
    • pp.278-287
    • /
    • 1998
  • Carotenoids in integument of wild manchurian trout, Brachymystax lenok, and wild and cultured masu salmon Oncohynchus macrostomus, which are all the Korean native cold fresh water fish, were investigated by thin layer chromatography, column chromatography and HPLC. The total carotenoid contents of the wild manchurian trout were $3.72\;mg\%$ which is relatively higher compare to other species of salmonidae. The carotenoids were composed of $36.9\%$ zeaxanthin and $14.7\%$ $\beta-carotene$ as the major compounds, $7.8\%$ triol $7.3\%$ isocryptoxanthin, $5.7\%$ 4-hydroxy echinenone, $4.7\%$ lutein, $4.5\%$ salmoxanthin and $2.2\%$ astaxanthin as minor compounds, and other carotenoids such as canthaxanthin, tunaxanthin A, tunaxanthin B, tunaxanthin C, $\beta-cryptoxanthin$ and $\alpha-cryptoxanthin$ as minute carotenoids. Wild masu salmon contained more total carotenoids than cultured one and the contents were $0.82\;mg\%$ and $0.66\;mg\%$, respectively. The composition of the carotenoids from wild masu salmon were $20.7\%$ xeaxanthin, $17.0\%$ isocryptoxanthin and $15.8\%\;\beta-carotene$ as major compounds, and $6.2\%$ triol, $6.1\%$ 4-hydroxy echinenone, $6.1\%$ salmoxanthin, $5.9\%$ canthaxanthin, $5.8\%$ lutein, $4.9\%$ $\alpha-cryptoxanthin$ and $1.0\%$ astaxanthin as minor compounds. The composition of the carotenoids from cultured masu salmon were $19.7\%$ isocryptoxanthin, $18.0\%$ $\beta-carotene$ and $10.3\%$ zeaxanthin as the major compounds, and $8.9\%\;\beta-cryptoxanthin$, $8.5\%\;\alpha-cryptoxanthin$, $8.0\%$ lutein, $7.6\%$ canthaxanthin, $5.1\%$ triol and $2.0\%$ astaxanthin as minor carotenoids. Based on these data, wild masu salmon contained more zeaxanthin, salmoxanthin and 4-hydroxy echinenone while cultured masu salmon contained more $\alpha-cryptoxanthin$, indicating that carotenoid pigment of masu salmon depends on their living conditions. Unlike wild masu salmon, 4-hydroxy echinenone and salmoxanthin which are the characteristic carotenoids of salmons, were not found in the integument of cultured masu salmon. Unlike manchurian trout, both wild and cultured masu salmon did not contain tunaxanthin A, tunaxanthin B and tunaxanthin C.

  • PDF

Studies on the Carotenoid Pigment in the Abdominal Skin of Bombina Orientalis(II). Occurrence of ${\alpha}$-Cryptoxanthin(3-hydroxy-${\alpha}$-carotene) in the Abdominal Skin of Bombina Orientalis (무당개구리의 복피 Carotenoid 색소에 관한 연구 (제2보). ${\alpha}$-Cryptoxanthin(3-hydroxy-${\alpha}$-carotene)의 분리 및 확인)

  • Chang Sae Hee;Chong Ui Chun
    • Journal of the Korean Chemical Society
    • /
    • v.18 no.5
    • /
    • pp.368-372
    • /
    • 1974
  • Dark red extract of abdominal skin of Bombina Orientalis was separated and purified with TLC, PLC(preparative thin layer chromatography) and column chromatography. Through the physical and chemical properties, visible and infrared spectral characteristics the third major pigment was identified as ${\alpha}$-cryptoxanthin(3-hydoroxy-${\alpha}$-carotene)

  • PDF

Optimization in Extraction Conditions of Carotenoids from Citrus unshiu Press Cake by Supercritical Carbon Dioxide (초임계 이산화탄소에 의한 감귤박으로부터 카로테노이드 추출 조건의 최적화)

  • Lim, Sang-Bin;Jwa, Mi-Kyung
    • Korean Journal of Food Science and Technology
    • /
    • v.35 no.6
    • /
    • pp.1104-1109
    • /
    • 2003
  • Response surface methodology (RSM) was used to investigate the effects of the processing parameters on supercritical $CO_2\;(SC-CO_2)$. extraction of total carotenoids and ${\beta}$-cyptoxanthin from Citrus unshiu press cake. The parameters tested were $SC-CO_2$ pressure, dynamic extraction time, and concentration of ethanol added as the modifier to $CO_2$. Experimental data correlated well with the processing parameters (p<0.01), and there was a high statistically significant multiple regression relationship for the extraction of total carotenoids and ${\beta}-cyrptoxanthin$ ($R^2=0.9789$ and 0.9796, respectively). The optimal processing conditions were extraction pressure 33.4 and 37.3 MPa, extraction time 39.6 and 41.0 min, ethanol concentration 18.6 and 17.0% for total carotenoids and ${\beta}-cryptozanthin$, respectively. Maximum extraction yields predicted by RSM were 61.1 and 95.8% ppm, respectively. The extraction yield of total carotenoids increased asymptotically with the increase of the extraction pressure. It increased in proportion to extraction time and concentration of the cosolvent. The extraction yield of ${\beta}-cryptoxanthin$ increased with extraction pressure, extraction time, and concentration of the cosolvent. The extraction time and the concentration of the cosolvent, and the interaction between extraction time and the concentration of the cosolvent significantly affected the extraction yields of carotenoids from C. unshiu press cake.

Carotenoid Pigments of Flounder and Yellowtail (넙치와 방어의 Carotenoid 색소성분)

  • 하봉석;강동수;조영숙;박미연
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.21 no.4
    • /
    • pp.407-413
    • /
    • 1992
  • Difference of carotenoid pigments in integuments of the wild and cultured flounder, Paralichthys olivaceus and yellowtail, Seriola quinqueradiata were studied. Total carotenoid contents in integuments of the wild and cultured flounder were 1.38mg% and 1.l6mg%, respectively. The main carotenoids in integuments of the wild flonder were zeaxanthin (19.22%), $\beta$-carotene type triol (17.80%), tunaxanthin C (17.77%), lutein (16.44%) and tunaxanthin B (13.70%). In addition, tunaxanthin A (5.42%), $\alpha$-cryptoxanthin (4.80%), astaxanthin (0.69%) and $\beta$-cryptoxanthin (0.24%) were also contained in small amounts. But in the cultured flounder, lutein (38.21%) and zeaxanthin (29.69%) were contained as main carotenoids. In addition, $\beta$-carotene type triol (7.80%), tunaxanthin C (7.05%), $\alpha$-cryptoxanthin (4.34%), tunaxanthin B (4.21%), as-taxanthin (2.40%) and $\beta$-cryptoxanthin (1.30%) were present in small amounts. Consequently, the wild flounder contained higher amounts of tunaxanthin and trios but contained lower amounts of lutein and zeaxanthin than the cultured flonder. The contents of carotenoids from integuments of wild and cultured yellow-tail were 1.08mg% and 0.09mg%. Wild and cultured yellowtail have similar carotenoid patterns, consisting of tunaxanthin C (44.11%, 43.37%), tunaxanthin B (33.56%, 29.23%) and tunaxanthin A (18.22%, 21.68%), respectively.

  • PDF

Comparison of Carotenoid Pigments in Korean Bittering, Cheilognathus signifer and Bride Bittering, Rhodeus ukekii in the Subfamily Cyprinidae (잉어아과에 속하는 묵납자루와 각시붕어의 Carotenoid 색소성분의 비교)

  • 백승한;김수영;정계임;권문정;최옥수;김종현;김화선;하봉석
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.28 no.6
    • /
    • pp.1220-1225
    • /
    • 1999
  • Differences in carotenoid composition in the integument of Korean bittering, Cheilognathus signifer and bride bittering, Rhodeus ukekii which are Korean native fresh water fish were compared. Total ca rotenoid contents in the integument of wild Korean bittering was 2.11mg% and composed of 42.6% zeaxanthin, 12.1% diatoxanthin and 12.1% lutein epoxide which are predominant carotenoids and 10.3% cynthiaxanthin, 8.3% zeaxanthin epoxide, 6.4% lutein and 1.5% cryptoxanthin which are minor carotenoids. Total ca rotenoid contents in the integument of wild bride bittering was 4.99mg% during a spawning period but after the spawning period it was decreased to 4.17mg% and carotenoid composition of bride bittering during the spawning period was 46.7% zeaxanthin, 26.5% diatoxanthin and 12.3% lutein which are predominant carotenoids, and 6.2% zeaxanthin epoxide, 3.1% cynthiaxanthin, 2.9% cryptoxanthin and 0.7% canthax anthin which are minor carotenoids. These results indicated that the carotenoid composition of bride bittering during spawning period was very similar to that of Korean bittering and carotenoid composition of bride bittering after the spawning period was 30.5% diatoxanthin, 21.5% cynthiaxanthin and 16.8% zeaxanthin which are predominant carotenoids and 14.0% cryptoxanthin, 11.3% lutein and 3.4% can thaxanthin which are minor carotenoids, indicating that after the spawning period, the content of zeaxanthin was decreased while that of cryptoxanthin and cynthiaxanthin was increased as compared to that of the spawning period. Total carotenoid contents in Korean bittering and bride bittering was relatively higher than that in other species of cyprinidae whereas composition of the carotenoid was similar.

  • PDF

Analysis of Carotenoids in Commonly Consumed Agricultural Products in Korea (국내에서 상용되는 농산물의 카로티노이드 함량 분석)

  • Park, Hye Jin;Lee, Juhong;Kwon, Nu Ri;Kang, Hye Jeong;Kim, Ju-Hyoung;Park, Jinju;Eom, Hyun-Ju
    • The Korean Journal of Food And Nutrition
    • /
    • v.35 no.5
    • /
    • pp.389-397
    • /
    • 2022
  • A total of 51 vegetables and fruits, commonly consumed agriculture products in Korea, were analyzed for their α-carotene, β-carotene, and β-cryptoxanthin contents as provitamin A. The beta-carotene content (㎍/100 g) was high in a few green leaf vegetables such as coriander (5,924.07), gegeol radish leaf (5.855.72), and curried mallow (5,138.01), while α-carotene and β-cryptoxanthin contents were not detected. The β-carotene in 8 kinds of 20 general vegetables was detected in the range of 214.06~1,437.67 ㎍/100 g, while α-carotene was detected at 460.17 ㎍/100 g in only old pumpkin. The β-cryptoxanthin was detected in the range of 106.55~315.49 ㎍/100 g in Japanese elm, watermelon, white cucumber, and lettuce. However, carotenoids were not detected in 10 kinds of agricultural products including oriental melon, potato, etc. In fruits, the beta-carotene contents ranged from 165.72~3,997.39 ㎍/100 g, showing maximum value in apple mango and minimum value in persimmon. The β-cryptoxanthin was detected at 232.22 ㎍/100 g in only passion fruit, while the α-carotene was detected at 77.25 ㎍/100 g in only darae. Thus, based on the analyzed results of carotenoids of agriculture products consumed or cultivated in Korea, and it was found that green leaf vegetables comprise high beta-carotene overall.