• Title/Summary/Keyword: crosslinking degree

Search Result 145, Processing Time 0.024 seconds

Investigation on The Effects of Processing Aids in Semiconductive Compounds for Extra High Voltage Cables (초고압 케이블용 반도전 재료에 미치는 가공 조제의 영향에 관한 연구)

  • Lee, Kyung-Won;Lee, Jung-Hee;Lee, Gun-Joo
    • Proceedings of the KIEE Conference
    • /
    • 2002.11a
    • /
    • pp.112-115
    • /
    • 2002
  • The effects of processing aids(P.A.) in semicoductive compounds(S.C.) with highly loaded carbon black for extra high voltage cables were investigated. The processability of S.C. is improved as the contents of P.A. increased, however, the electrical, mechanical properties and smoothness of S.C. grew worse, especially for the S.C. which contains 5wt% of P.A., the volume resistivity after heat cycle which shows long term reliability increased about three times after 15cycles compared to the S.C. which contains no P.A. We inferred that it is caused by the action of P.A. as the insulating sites, thermal expansion of polymer matrix which leads the length between carbon blacks to shorten, and the decrease of degree of crosslinking. The change of ion contents which means cleanliness of S.C. is not occured regardless of the addition of P.A.

  • PDF

Solid-State $^1H$ and $^{29}Si$ NMR Studies of Silicate and Borosilicate Gel to Glass Conversion

  • 양경화;우애자
    • Bulletin of the Korean Chemical Society
    • /
    • v.17 no.8
    • /
    • pp.696-699
    • /
    • 1996
  • Silicate and borosilicate gels were prepared by the sol-gel process and thermally treated in the 150-850 ℃ temperature range. Solid-state 1H MAS and 29Si CP/MAS NMR spectroscopy were used to investigate the effects of heat treatments on the silicate gel to glass conversion process. The 1H NMR isotropic chemical shifts and the relative intensities of hydrogen bonded and isolated silanol groups have been used to access the information concerning the dehydration process on the silicate gel surface. The 29Si NMR isotropic chemical shifts affected by the local silicon environment have been used to determine the degree of crosslinking, i.e. the number of siloxane bonds. These NMR results suggest that the silicate gel to glass conversion process is occurred by two stages which are dependent on the temperature; (1) the formation of particles up to 450 ℃ and (2) the formation of large particles by aggregation of each separated single particle above 450 ℃. In addition, the effects of B atom on the formation of borosiloxane bonds in borosilicates have been discussed.

Preparation and Analysis of High Functional Silicone Hydrogel Lens Containing Metal Oxide Nanoparticles by Photopolymerizaion

  • Heo, Ji-Won;Sung, A-Young
    • Korean Journal of Materials Research
    • /
    • v.32 no.4
    • /
    • pp.193-199
    • /
    • 2022
  • In this study, lenses are fabricated using various nanomaterials as additives to a silicone polymer made with an optimum mixing ratio and short polymerization time. In addition, PVP is added at a ratio of 1 % to investigate the physical properties according to the degree of dispersion, and the compatibility with hydrophobic silicone and the possibility of application as a functional lens material are confirmed. The main materials are SIU as a silicone monomer, DMA, a hydrophilic copolymer, EGDMA as a crosslinking agent, and 2H2M as a photoinitiator. Holmium (III) oxide, Europium (III) oxide, aluminum oxide, and PVP are used. When Holmium (III) oxide and Europium (III) oxide are added based on the Ref sample, the characteristics of the lens tend to be similar overall, and the aluminum oxide shows a tendency slightly different from the previous two oxides. This material can be used as a silicone lens material with various nano oxides and polyvinylpyrrolidone (PVP) acting as a dispersant.

Cytotoxicity of Hyaluronic Acid Membrane Cross-linked with Lactide (락타이드로 가교시킨 히아루론산 막의 세포독성)

  • Kim, Won-Jung;Kwon, Ji-Young;Cheong, Seong-Ihl;Kim, In-Seop
    • KSBB Journal
    • /
    • v.21 no.4
    • /
    • pp.255-259
    • /
    • 2006
  • The biodegradable hyaluronic acid(HA) membranes cross-linked with lactide using the crosslinking agent, 1-ethyl-3(3-dimethyl aminopropyl) carbodiimide(EDC) were prepared as a potential biocompatible material for tissue engineering. HA membranes having different mechanical properties were synthesised by varying degree of the mole ratio of lactide to HA, EDC concentration, and crosslinking temperature. HA membranes were degradable in water solution and the degradation became slower with the increasing mole ratio of lactide to HA. HA membranes were sterilized using ethylene oxide gas and extracted with cell culture medium for 24 h at $37^{\circ}C$ and 200 rpm. Cytotoxicity of the extract was tested using NIH/3T3 mouse embryo fibroblast as a model cell. Growth inhibition was not observed in the extracts of HA membranes with the mole ratios of lactide to HA, 5 or 10, and 10% EDC concentration, however 11% of growth inhibition was observed in the extract with the mole ratio of 13. Growth inhibition was not observed in the extracts of HA membranes prepared with 5% EDC or 10% EDC and the mole ratio of lactide to HA, 10, however 12% of growth inhibition was observed in the extract with 20% EDC. Cytotoxicity was not observed in the extracts of HA membranes prepared at varying crosslinking temperatures, $15^{\circ}C,\;25^{\circ}C,\;and\;28^{\circ}C$ with the mole ratio of lactide to HA, 10 and 10% EDC.

Effect of Cationic Initiator Content on Electron-beam Curing of Difunctional Epoxy Resin (양이온 개시제 함량이 2관능성 에폭시 수지의 Electron-beam 경화에 미치는 효과)

  • Soo-Jin Park;Gun-Young Heo;Jae-Rock Lee;Dong Hack Suh
    • Journal of the Korean Chemical Society
    • /
    • v.47 no.3
    • /
    • pp.250-256
    • /
    • 2003
  • In this work, the effect of cationic initiator content on the electron-beam (EB) curing process of diglycidylether of bisphenol-A (DGEBA) resin was studied using near-infrared spectroscopy (NIRS), thermogravimetric analysis (TGA), and critical stress intensity factor $(K_{IC})$. Benzylquinoxalinium hexafluoroantimonate (BQH) were used as an initiator and its content was varied from 0.5 to 3 phr. NIRS measurements showed that the hydroxyl group of EB-cured epoxy resin was increased with increasing the BQH content. Thermal stability and $K_{IC}$ value of EB-cured epoxy resin were increased with increasing the BQH content but were decreased above 2 phr content. These results could be attributed to the decrease of the conversion and degree of crosslinking. In another word, the conversion and degree of crosslinking were restricted by the incomplete network structure from high reactivity at the BQH content above 2 phr, resulting in decreasings of thermal stability and $K_{IC}$.

Mechanical Properties of Acrylonitrile Functionalized Emulsion SBR/silica Compounds (아크릴로니트릴이 극성기로 도입된 유화중합 SBR/실리카 컴파운드의 기계적 물성)

  • Kim, Dong-Won;Seo, Byeong-Ho;Kim, Hee-Jeong;Paik, Hyun-Jong;Kang, Jong-Won;Kim, Won-Ho
    • Elastomers and Composites
    • /
    • v.47 no.1
    • /
    • pp.54-64
    • /
    • 2012
  • Acrylonitrile was introduced in the emulsion SBR to increase compatibility between silica and rubber. AN-SBR/silica compounds showed faster vulcanization time and higher delta torque values than SBR 1721/silica compounds because interaction between nitrile group of AN-SBR and silanol group on the silica surface could make hydrogen bond that prevented adsorption of the accelerator on the silica surface, which improved the vulcanization reaction efficiency and enhanced the degree of crosslinking. AN-SBR/silica compound showed higher values in minimum torque than SBR 1721/silica compound during the vulcanization because AN-SBR has higher molecular weight than SBR 1721 in the raw material. When PEG was added to the SBR 1721 and AN-SBR compounds, vulcanization time was faster than SBR 1721 and AN-SBR compounds without PEG because PEG has a large number of ether linkages which show high compatibility with silanol group on the silica surface that prevented the adsorption of the accelerator and the ingredients on the silica surface, which improved the vulcanization reaction efficiency. In the mechanical properties, AN-SBR compounds showed higher modulus values at 100%, 300% than SBR 1721 compounds because interaction between nitrile group of AN-SBR and silanol group on the silica surface enhanced the degree of crosslinking. In the dynamic properties, AN-SBR compounds showed lower tan ${\delta}$ values at $0^{\circ}C$ than SBR 1721 compounds in accordance with the $T_g$ values. AN-SBR compounds showed lower tan ${\delta}$ values at $60^{\circ}C$ than SBR 1721 compounds because interaction between acrylonitrile and silica caused strong filler-rubber interaction that induced low energy dissipation by the filler-filler interaction.

Tuning the rheological properties of colloidal microgel controlled with degree of cross-links (가교도가 제어된 콜로이드 마이크로겔의 유변학적 물성 분석)

  • Han, Sa Ra;Shin, Sung Gyu;Oh, Seung Joo;Cho, Sung Woo;Jung, Naseul;Kang, Bu Kyeung;Jeong, Jae Hyun
    • Journal of the Korean Applied Science and Technology
    • /
    • v.36 no.2
    • /
    • pp.645-655
    • /
    • 2019
  • In this study, colloidal microgel with viscoelasticity were prepared by using dispersion containing physical crosslinking agents and microgels with various strengths depending on the degree of cross-links.As the chemical crosslinking agent PEGDA400 content increased, hydrogels have various physical properties the swelling ratio decreased from $2.0{\times}10^4%$ to $6.0{\times}10^3%$ and increased viscosity by about 60%. The colloidal microgel was prepared with micro hydrogel grinded to $100{\mu}m$ size and the rheological behavior was confirmed with physical cross linking agent. A colloidal microgel having various viscosities was prepared by controlling starch and alginate based on micro-hydrogel containing 0.75% (w/v) of PEGDA400. In conclusion, these results would be highly useful for applying as a product that can give various physical properties to the colloidal suspensions, cosmetics, paint, and food industry.

A Study on Effects of Iontophoresis and Phonophoresis on Transdermal Transport of Dexamethasone (이온도입과 음파영동이 Dexamethasone의 경피침투에 미치는 영향)

  • Jun Kyoung-Hee;Park Rae-Joon;Kwon Won-an
    • The Journal of Korean Physical Therapy
    • /
    • v.12 no.2
    • /
    • pp.191-201
    • /
    • 2000
  • This study was investigated the effects of a direct current and ultrasound on transdermal transport of dexamethasone into the rabbits which had contusion in the thigh. Each group was treated under the tallowing conditions. 1. EXP group I : $10\%$ dexamethasone ointment and ultrasound 2. EXP group II : $1\%$aqueous solution of dexamethasone and iontophoresis 3. EXP group III : the application of $10\%$ dexamethasone ointment 4. Control group : No treatment The degree of anti-inflammation was evaluated by the naked eye, the change in girth of thigh, and a light microscope. The results were as follows. 1.8y the naked eye. an inflammation sign was seen in all groups and especially. symptoms of redness. heat swelling were prominent in EXP group I. 2. In comparision in the change of girth of thigh, only EXP group II showed no significant change. Therefore, it meant that there was effective anti-inflammatory reaction in EXP group II. 3. The infiltration of inflammation cells, the degree of swelling, and the degree of crosslinking of connective tissues were evaluated with a light microscope. As a result, EXP group II showed the most effective anti-inflammatory reaction. And, in order of EXP group III, control group, the effect of anti-inflammation reaction was decreased. 4. EXP group I showed more intensive inflammation than control group.

  • PDF

Suppression of Aluminum Corrosion in Lithium Bis(trifluoromethanesulfonyl)imide-based Electrolytes by the Addition of Fumed Silica

  • Louis, Hamenu;Lee, Young-Gi;Kim, Kwang Man;Cho, Won Il;Ko, Jang Myoun
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.6
    • /
    • pp.1795-1799
    • /
    • 2013
  • The corrosion property of aluminum by lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) salt is investigated in liquid and gel electrolytes consisting of ethylene carbonate/propylene carbonate/ethylmethyl carbonate/diethyl carbonate (20:5:55:20, vol %) with vinylene carbonate (2 wt %) and fluoroethylene carbonate (5 wt %) using conductivity measurement, cyclic voltammetry, scanning electron microscopy, and energy dispersive X-ray spectroscopy. All corrosion behaviors are attenuated remarkably by using three gel electrolytes containing 3 wt % of hydrophilic and hydrophobic fumed silica. The addition of silica particles contributes to the increase in the ionic conductivity of the electrolyte, indicating temporarily formed physical crosslinking among the silica particles to produce a gel state. Cyclic voltammetry also gives lower anodic current responses at higher potentials for repeating cycles, confirming further corrosion attenuation or electrochemical stability. In addition, the degree of corrosion attenuation can be affected mainly by the electrolytic constituents, not by the hydrophilicity or hydrophobicity of silica particles.

Preparation and Super-Water-Absorbency of Poly(sodium acrylate-co-acrylamide-co-2-hydroxyethyl acrylate) (Poly(sodium acrylate-co-acrylamide-co-2-hydroxyethyl acrylate)의 제조와 고흡수 특성)

  • Zhang Yuhong;Deng Min;He Peixin
    • Polymer(Korea)
    • /
    • v.30 no.4
    • /
    • pp.286-292
    • /
    • 2006
  • Super water-absorbent resins were prepared by inverse suspension copolymerization of sodium acrylate, acrylamide and 2-hydroxyethyl acrylate using N, N'-methylene-bis-acrylamide as cross-linker. For the suspension copolymerization, monohexadecyl phosphate was employed as the dispersing agent, cyclohexane as the dispersing medium and potassium persulfate as the initiator. The dependence of water-absorption capacity on the amount of crosslinking agent, oil/water ratio, degree of neutralization and the composition of the copolymer were systematically investigated. Furthermore, the swelling kinetics of the super water-absorbent copolymer was carried out. The absorption of the resins is more than 1800 g/g for deionized water and 100 g/g for 0.9% NaCl solution, respectively. The copolymers showed an increased salt resistance and enhanced water retention of soil.