• Title/Summary/Keyword: cross-subject cross-validation

Search Result 17, Processing Time 0.021 seconds

Kernel Ridge Regression with Randomly Right Censored Data

  • Shim, Joo-Yong;Seok, Kyung-Ha
    • Communications for Statistical Applications and Methods
    • /
    • v.15 no.2
    • /
    • pp.205-211
    • /
    • 2008
  • This paper deals with the estimations of kernel ridge regression when the responses are subject to randomly right censoring. The iterative reweighted least squares(IRWLS) procedure is employed to treat censored observations. The hyperparameters of model which affect the performance of the proposed procedure are selected by a generalized cross validation(GCV) function. Experimental results are then presented which indicate the performance of the proposed procedure.

Censored Kernel Ridge Regression

  • Shim, Joo-Yong
    • Journal of the Korean Data and Information Science Society
    • /
    • v.16 no.4
    • /
    • pp.1045-1052
    • /
    • 2005
  • This paper deals with the estimations of kernel ridge regression when the responses are subject to randomly right censoring. The weighted data are formed by redistributing the weights of the censored data to the uncensored data. Then kernel ridge regression can be taken up with the weighted data. The hyperparameters of model which affect the performance of the proposed procedure are selected by a generalized approximate cross validation(GACV) function. Experimental results are then presented which indicate the performance of the proposed procedure.

  • PDF

Two-step LS-SVR for censored regression

  • Bae, Jong-Sig;Hwang, Chang-Ha;Shim, Joo-Yong
    • Journal of the Korean Data and Information Science Society
    • /
    • v.23 no.2
    • /
    • pp.393-401
    • /
    • 2012
  • This paper deals with the estimations of the least squares support vector regression when the responses are subject to randomly right censoring. The estimation is performed via two steps - the ordinary least squares support vector regression and the least squares support vector regression with censored data. We use the empirical fact that the estimated regression functions subject to randomly right censoring are close to the true regression functions than the observed failure times subject to randomly right censoring. The hyper-parameters of model which affect the performance of the proposed procedure are selected by a generalized cross validation function. Experimental results are then presented which indicate the performance of the proposed procedure.

Kernel Poisson Regression for Longitudinal Data

  • Shim, Joo-Yong;Seok, Kyung-Ha
    • Journal of the Korean Data and Information Science Society
    • /
    • v.19 no.4
    • /
    • pp.1353-1360
    • /
    • 2008
  • An estimating procedure is introduced for the nonlinear mixed-effect Poisson regression, for longitudinal study, where data from different subjects are independent whereas data from same subject are correlated. The proposed procedure provides the estimates of the mean function of the response variables, where the canonical parameter is related to the input vector in a nonlinear form. The generalized cross validation function is introduced to choose optimal hyper-parameters in the procedure. Experimental results are then presented, which indicate the performance of the proposed estimating procedure.

  • PDF

Facial Expression Classification Using Deep Convolutional Neural Network

  • Choi, In-kyu;Ahn, Ha-eun;Yoo, Jisang
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.1
    • /
    • pp.485-492
    • /
    • 2018
  • In this paper, we propose facial expression recognition using CNN (Convolutional Neural Network), one of the deep learning technologies. The proposed structure has general classification performance for any environment or subject. For this purpose, we collect a variety of databases and organize the database into six expression classes such as 'expressionless', 'happy', 'sad', 'angry', 'surprised' and 'disgusted'. Pre-processing and data augmentation techniques are applied to improve training efficiency and classification performance. In the existing CNN structure, the optimal structure that best expresses the features of six facial expressions is found by adjusting the number of feature maps of the convolutional layer and the number of nodes of fully-connected layer. The experimental results show good classification performance compared to the state-of-the-arts in experiments of the cross validation and the cross database. Also, compared to other conventional models, it is confirmed that the proposed structure is superior in classification performance with less execution time.

Motion classification using distributional features of 3D skeleton data

  • Woohyun Kim;Daeun Kim;Kyoung Shin Park;Sungim Lee
    • Communications for Statistical Applications and Methods
    • /
    • v.30 no.6
    • /
    • pp.551-560
    • /
    • 2023
  • Recently, there has been significant research into the recognition of human activities using three-dimensional sequential skeleton data captured by the Kinect depth sensor. Many of these studies employ deep learning models. This study introduces a novel feature selection method for this data and analyzes it using machine learning models. Due to the high-dimensional nature of the original Kinect data, effective feature extraction methods are required to address the classification challenge. In this research, we propose using the first four moments as predictors to represent the distribution of joint sequences and evaluate their effectiveness using two datasets: The exergame dataset, consisting of three activities, and the MSR daily activity dataset, composed of ten activities. The results show that the accuracy of our approach outperforms existing methods on average across different classifiers.

Multimodal Parametric Fusion for Emotion Recognition

  • Kim, Jonghwa
    • International journal of advanced smart convergence
    • /
    • v.9 no.1
    • /
    • pp.193-201
    • /
    • 2020
  • The main objective of this study is to investigate the impact of additional modalities on the performance of emotion recognition using speech, facial expression and physiological measurements. In order to compare different approaches, we designed a feature-based recognition system as a benchmark which carries out linear supervised classification followed by the leave-one-out cross-validation. For the classification of four emotions, it turned out that bimodal fusion in our experiment improves recognition accuracy of unimodal approach, while the performance of trimodal fusion varies strongly depending on the individual. Furthermore, we experienced extremely high disparity between single class recognition rates, while we could not observe a best performing single modality in our experiment. Based on these observations, we developed a novel fusion method, called parametric decision fusion (PDF), which lies in building emotion-specific classifiers and exploits advantage of a parametrized decision process. By using the PDF scheme we achieved 16% improvement in accuracy of subject-dependent recognition and 10% for subject-independent recognition compared to the best unimodal results.

Micro-Expression Recognition Base on Optical Flow Features and Improved MobileNetV2

  • Xu, Wei;Zheng, Hao;Yang, Zhongxue;Yang, Yingjie
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.15 no.6
    • /
    • pp.1981-1995
    • /
    • 2021
  • When a person tries to conceal emotions, real emotions will manifest themselves in the form of micro-expressions. Research on facial micro-expression recognition is still extremely challenging in the field of pattern recognition. This is because it is difficult to implement the best feature extraction method to cope with micro-expressions with small changes and short duration. Most methods are based on hand-crafted features to extract subtle facial movements. In this study, we introduce a method that incorporates optical flow and deep learning. First, we take out the onset frame and the apex frame from each video sequence. Then, the motion features between these two frames are extracted using the optical flow method. Finally, the features are inputted into an improved MobileNetV2 model, where SVM is applied to classify expressions. In order to evaluate the effectiveness of the method, we conduct experiments on the public spontaneous micro-expression database CASME II. Under the condition of applying the leave-one-subject-out cross-validation method, the recognition accuracy rate reaches 53.01%, and the F-score reaches 0.5231. The results show that the proposed method can significantly improve the micro-expression recognition performance.

Using CNN- VGG 16 to detect the tennis motion tracking by information entropy and unascertained measurement theory

  • Zhong, Yongfeng;Liang, Xiaojun
    • Advances in nano research
    • /
    • v.12 no.2
    • /
    • pp.223-239
    • /
    • 2022
  • Object detection has always been to pursue objects with particular properties or representations and to predict details on objects including the positions, sizes and angle of rotation in the current picture. This was a very important subject of computer vision science. While vision-based object tracking strategies for the analysis of competitive videos have been developed, it is still difficult to accurately identify and position a speedy small ball. In this study, deep learning (DP) network was developed to face these obstacles in the study of tennis motion tracking from a complex perspective to understand the performance of athletes. This research has used CNN-VGG 16 to tracking the tennis ball from broadcasting videos while their images are distorted, thin and often invisible not only to identify the image of the ball from a single frame, but also to learn patterns from consecutive frames, then VGG 16 takes images with 640 to 360 sizes to locate the ball and obtain high accuracy in public videos. VGG 16 tests 99.6%, 96.63%, and 99.5%, respectively, of accuracy. In order to avoid overfitting, 9 additional videos and a subset of the previous dataset are partly labelled for the 10-fold cross-validation. The results show that CNN-VGG 16 outperforms the standard approach by a wide margin and provides excellent ball tracking performance.

Classification of Mental States Based on Spatiospectral Patterns of Brain Electrical Activity

  • Hwang, Han-Jeong;Lim, Jeong-Hwan;Im, Chang-Hwan
    • Journal of Biomedical Engineering Research
    • /
    • v.33 no.1
    • /
    • pp.15-24
    • /
    • 2012
  • Classification of human thought is an emerging research field that may allow us to understand human brain functions and further develop advanced brain-computer interface (BCI) systems. In the present study, we introduce a new approach to classify various mental states from noninvasive electrophysiological recordings of human brain activity. We utilized the full spatial and spectral information contained in the electroencephalography (EEG) signals recorded while a subject is performing a specific mental task. For this, the EEG data were converted into a 2D spatiospectral pattern map, of which each element was filled with 1, 0, and -1 reflecting the degrees of event-related synchronization (ERS) and event-related desynchronization (ERD). We evaluated the similarity between a current (input) 2D pattern map and the template pattern maps (database), by taking the inner-product of pattern matrices. Then, the current 2D pattern map was assigned to a class that demonstrated the highest similarity value. For the verification of our approach, eight participants took part in the present study; their EEG data were recorded while they performed four different cognitive imagery tasks. Consistent ERS/ERD patterns were observed more frequently between trials in the same class than those in different classes, indicating that these spatiospectral pattern maps could be used to classify different mental states. The classification accuracy was evaluated for each participant from both the proposed approach and a conventional mental state classification method based on the inter-hemispheric spectral power asymmetry, using the leave-one-out cross-validation (LOOCV). An average accuracy of 68.13% (${\pm}9.64%$) was attained for the proposed method; whereas an average accuracy of 57% (${\pm}5.68%$) was attained for the conventional method (significance was assessed by the one-tail paired $t$-test, $p$ < 0.01), showing that the proposed simple classification approach might be one of the promising methods in discriminating various mental states.