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Abstract 

The main objective of this study is to investigate the impact of additional modalities on the performance of 

emotion recognition using speech, facial expression and physiological measurements. In order to compare 

different approaches, we designed a feature-based recognition system as a benchmark which carries out linear 

supervised classification followed by the leave-one-out cross-validation. For the classification of four 

emotions, it turned out that bimodal fusion in our experiment improves recognition accuracy of unimodal 

approach, while the performance of trimodal fusion varies strongly depending on the individual. Furthermore, 

we experienced extremely high disparity between single class recognition rates, while we could not observe a 

best performing single modality in our experiment. Based on these observations, we developed a novel fusion 

method, called parametric decision fusion (PDF), which lies in building emotion-specific classifiers and 

exploits advantage of a parametrized decision process. By using the PDF scheme we achieved 16% 

improvement in accuracy of subject-dependent recognition and 10% for subject-independent recognition 

compared to the best unimodal results. 
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1. Introduction 

During the last decade, researchers have made great efforts to empower machines with emotional sensitivity, 

and affective man-machine interaction (AMMI) is becoming an indispensable component of today's emerging 

high-tech applications. One of the most important prerequisites for the success of AMMI is the reliability of 

the automatic emotion recognition system. Recently, numerous methods have been proposed to detect human 

emotions from various modalities including facial expression, gesture, speech, and physiological 

measurements [1]. The focal point for multimodal emotion recognition is to design efficient fusion methods, 

which pursue human-like decision process. Basically, the combination of multimodal information can be 

performed at least at three levels, i.e., data, feature, and decision level. When dealing with observations coming 

from the same or a very similar modality source, the data-level fusion that simply merges the multiple 

observations might be the most appropriate method that does not require any separate preprocessing. Feature-
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level fusion is more efficient when the modalities are characteristically tightly-coupled, time synchronized, 

and mutually complementary in low-level. For multimodal sensory data obtained from heterogeneous (or 

loosely coupled) modalities, decision-level fusion might be the best choice. In the decision fusion, multiple 

experts that use different classifiers trained by same data or same type of classifier trained by different data are 

generated to derive a favorable final decision. Since it requires a modality-specific preprocessing and 

individual classification for each modality, failure and noise sensitivity is relatively low compared to the 

former methods.  

The motivation of this work is twofold; (a) to investigate the impact of additional modalities on recognition 

accuracy by comparing the recognition performance of various systems with different settings, (b) to develop 

a novel fusion method using feature ensembles and parametric decision rule for multimodal emotion 

recognition. In this paper, we present emotion recognition results obtained by combining three modalities that 

are most frequently used in literature for unimodal emotion recognition, i.e. physiological signals, speech, and 

facial expression. Moreover, we propose a novel classification scheme for multimodal emotion recognition, 

which exploits advantages of feature- and decision-level fusion and binary (dichotomous) class tree 

classification. 

 

2. Related Work 

A vast amount of studies in the automatic emotion recognition has been reported during the last decade. 

Researchers have shown that emotion can be successfully recognized by detecting affective cues in typical 

expression channels of emotion such as speech signal, facial expression, gesture, and physiological changes 

[2, 3]. Besides unimodal approaches, many studies in multimodal affect recognition have also been introduced 

by exploiting complementary combination of different modalities, mostly by combining audiovisual 

information, e.g., speech and facial expression [4, 5]. In the work of Busso et al. [6] an emotion-specific 

comparison of feature-level and decision-level fusion has been reported by using an audiovisual database 

containing four emotions, sadness, anger, happiness, and neutral state, deliberately posed by an actress. They 

observed that feature-level fusion was most suitable for differentiating anger and neutral state while decision-

level fusion performed better for happiness and sadness. They concluded that the best fusion method depends 

on the application. 

In our previous work [7] on bimodal fusion of physiological signals and speech we proposed a hybrid-fusion 

method that utilizes decision of feature fusion for final decision fusion. Recently, Povolny et al. [8] achieved 

recognition accuracy of 71% for arousal and 60% for valence by exploiting fusion of audio, video, and 

physiological data.  

 

3. Trimodal Dataset 
 

3.1 Experimental Setting 

To generate spontaneous multimodal emotion dataset, we developed a Wizard-Of-Oz quiz program which 

is similar to the German TV quiz show ``Who wants to be a millionaire?''. In the graphical interface, a virtual 

agent presents the quiz and communicates with the user. A human quiz master (wizard) has control of the agent 

and the actual course of the quiz, following a working script to evoke situations that lead to a certain emotional 

response. The interface does not offer the user any letters as abbreviations for the single options, but forces the 

user to answer always with a complete sentence, in order to get sufficient length of speech data. The virtual 
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agent is represented by a disembodied voice system using the AT&T Natural Voices speech synthesizer which 

transforms the typed text by the wizard to a natural voice. The wizard may freely type utterances, but also has 

access to a set of macros that contain pre-defined questions or comments which made it easier for the human 

wizard to follow the working script and to get reproducible situations. The working script of the wizard 

contains four strategic phases that serve to induce the four representative emotional states on the 2D (valence 

vs. arousal) emotion model. The entire session implies the four phases and takes about 45 minutes. 

Phase 1 (LP): The users are offered a set of very easy questions every user is supposed to know to achieve 

equal conditions for all of them. This phase is characterized by a slight increase of the score and gentle appraisal 

of the agent and serves to induce an emotional state of low arousal and positive valence (LP) in the user. 

Phase 2 (HP): In the second phase, the user is confronted with extremely difficult questions nobody is 

supposed to know. Whatever option the user chooses, the agent pretends the users answer is correct so that the 

user gets the feeling that one hits the right option just by chance. In order to evoke high arousal and positive 

valence (HP), this phase leads to a high gain of money. 

Phase 3 (LN): During the third phase, the wizard tries to stress the user by presenting a mixed set of solvable 

and difficult questions. Yet, this should not cause a drastic loss of money. Furthermore, the agent often attempts 

to provide superfluous information related to the topics addressed in the questions so that the user will be 

boring. Thus, this phase should lead to low arousal and negative valence (LN). 

Phase 4 (HN): Finally, the user gets frustrated by unsolvable questions. Whatever option the user chooses, the 

agent always pretends the answer is wrong, resulting in a high loss of money. Furthermore, we include simple 

questions for which we offer similar-sounding options. The user is supposed to choose the right option, but the 

situation makes the user believe that the speech recognizer is not working properly and deliberately select the 

wrong option. This phase is intended to evoke high arousal and negative valence (HN). 
 

3.2 Collected Sensor Data 

During the quiz sessions with three male German-speaking students in their twenties, the speech (48 KHz/16 

Bit, mono), video (webcam, 640 x 480), and the 5-channel physiological signals are measured; 

electromyogram (EMG), skin conductivity (SC), blood volume pulse (BVP), temperature (Temp), and 

respiration (RSP). The sampling rates are 32 Hz for EMG, SC, RSP, and Temp, 256 Hz for BVP. Each of long 

class segments is annotated by two labelers and self-reports of subjects. We then trimmed each class segment 

into many small samples based on spoken phrases. As a result we obtained a total of 343 trimodal samples 

(subject A: 94, subject B: 105, subject C: 144) for classification process. 

 

4. General Methodology and Result 

In this section recognition results of uni- and multimodal approaches are presented, which motivated our 

novel decision fusion scheme described in the Section 5.    
 

4.1 Multimodal Feature Calculation 

Physiological features (BIO): we calculated a total of 77 features for each segment of 5-channel biosignals. 

For details about physiological features, we refer to our previous work [9]. 

Speech features (SPE): in frequency domain, we calculated three spectral features using the STFT; pitches 

using a window length of 40ms, energy spectrum, and formant object using a window length of 25ms. 
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Moreover 10 MFCCs (Mel-frequency cepstral coefficients) from each segment are calculated using a window 

length of 15ms. From pitch and energy spectrum, also the series of the minima and maxima, and of the 

distances, magnitudes and steepness between adjacent extrema were obtained. For the MFCCs, we first 

exponentiated the cepstral coefficients to obtain non-negative values and calculated the spectral entropy as in 

the case of the biosignal in order to capture the distribution of cepstral energy. As a result, we obtained a total 

of 61 features from each speech segment. 

Facial features (VID): similar to our previous work [10] we identified 18 points of interest (POI) that are 

relevant to affective facial expression. To each fiducial point, we applied the Gabor filter and obtained 18 

complex coefficients, i.e., a total of 324 features for each image. 

 

4.2 Classification 

Since the goal of this work relates to conceptualizing new efficient decision fusion scheme, rather than 

performance comparison of existing classifiers, we use single pLDA (pseudoinverse linear discriminant 

analysis [9], for all classification problems after feature selection using sequential backward search (SBS) in 

this work. For the multimodal (bimodal and trimodal) approaches we analyze the performance of two common 

fusion methods; feature level fusion (FF) which merges all multimodal feature sets into single feature vector 

and employs single classifier, and decision level fusion (DF) which classifies each modality separately and 

combines the multiple decisions for final decision by using majority voting for example. 

 

4.3 Recognition Results 

Unimodal Recognition: Table 1 presents the correct classification ratio CCR of subject-dependent (Subjects 

A, B, and C) and subject-independent (All) classification where the features of all subjects are merged. 

Particularly for the subject-independent case the normalization of merged feature vector is necessary to 

degrade possible individual difference of magnitude scales. We used mean-standard deviation (z-score) 

normalization. 
 

Table 1. Unimodal classification results in CCR (%) of four emotions (HP, HN, LN, LP) 

 

Multimodal Recognition: To answer the question, whether the common logic ``the more data the better 

precision'' is valid for automatic emotion recognition, we considered all possible combinations of the given 

three modalities. As shown in Table 2, the logic seems not to necessarily be valid for our experiment. Overall, 

we achieved about 12% improvement of recognition accuracy with multimodal approaches compared to 

unimodal results. 
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Table 2. Multimodal classification results in average CCR (%) of four emotions. Best 

multimodal combination for each subject is in bold. 

 

5. Parametric Decision Fusion 

By taking the best results (88.4%, 81.8%, 76.3%) of the subjects in Table 2, it shows an average accuracy 

of 82.1% for subject-dependent and 62.1% for subject-independent classification. During this first analysis 

with nonparametric strategy, we could observe following evidences; a) the best modality and the best 

combination of modalities for emotion recognition is not determinable but varies with subject, b) the disparity 

between recognition rates of single classes is remarkably high and impairs the average CCR ultimately, c) the 

decision-level fusion using a generalized decision making algorithm such as majority voting and Borda count 

can often be faced with problem of extremely unbalanced overall performance due to overemphasized classes 

by repetitive weighting. 

Based on these observations, we developed a novel fusion method, we called ``parametric decision fusion 

(PDF)'', which lies in building class-specific classifiers and parametrized decision process. Figure 1 shows the 

architecture of PDF system. 

Figure 1. Architecture of PDF recognition system 
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5.1 Building Dichotomous Classifiers 

The basic idea of PDF is to build multiple classifiers that are essentially independent for each other within 

a given classification problem, and to determine special classifiers for each of them. In multimodal approach, 

therefore, the number of classifiers increases with the number of modalities and their combinations. For the 

work in this paper, we consider three dichotomous classifiers, in addition to the four-class classifier (HP, HN, 

LN, LP), that are built by grouping two classes into one classifier member according to the two reference axes 

of the 2D emotion model. PDF aims to make maximum use of such emotion-specific restructuring of classes 

and exploit the advantage of binary classification, for which linear classifiers such as pLDA might be most 

suitable. Figure 2 illustrates the possible two-class combinations based on arousal, valence, and cross axis.  

 

Figure 2. Suggested emotion-specific dichotomous ensembles 

 

Each of these four classifiers produces their own decisions independently, i.e., three binary decisions and one 

four-class decision. 
 

5.2 Cascaded Specialists Algorithm (CSA) 

In most classification problems it is desired to get a well-balanced recognition rate for all classes, without 

high disparity between the classes. However, it is often overseen in literature to monitor single class 

performance that might be in practice more important than an average overall accuracy. Taking this into 

account we proposed cascaded specialists algorithm (CSA) in our previous work (we refer to [11] for more 
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details). In this work we further adapted the CSA to PDF. 
 

5.3 Making Decision 

We apply the CSA to all classifiers separately. Table 3 shows examples of specialists determined for three 

dichotomous classifiers and four-class classifier, e.g., the specialist for arousal classification of subject-

independent case is a pLDA classifier trained by SPE feature vector, while there are four different specialists 

for the four-class classifier. 
 

Table 3. Example of selected specialists for CSA 

 

Consequently, we obtain a total of four different decisions in terms of arousal, valence, cross axis, and direct 

classifier. To make a final decision among four emotions we use a voting method that is quite straightforward. 

We count the votes of four decisions (all votes are uniformly valued without weighting) onto the four quadrants 

of the 2D emotion model and then determine the quadrant (emotion), which obtained the most votes, as the 

final decision. Classification is guaranteed in most cases, except for the case of a draw, which rarely occurs in 

practice. In such case, we take the voting result of arousal and valence classifiers as a final decision. 
 

5.4 Results 

Table 4 summarizes recognition results of PDF in comparison with best uni- and multimodal recognition 

results from Table 1 and 2. The proposed PDF could improve the best overall recognition accuracy of the 

multimodal approach using feature-level fusion by 5.3% and 14.6% compared to the best uni-modal approach. 

Moreover, PDF succeeded not only in improving recognition accuracy subject-independently, but also in 

rectifying the high disparity of single class accuracies observed in uni- and multimodal approaches as shown 

in the Table 4. For the significance evaluation of the improvement, we calculated paired t-tests and Cohen's 

effect sizes (𝑑) [12], 
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𝑑 =
𝑥1

′ − 𝑥2
′

√𝑠1
2+ 𝑠2

2 /2  

                                      (1) 

where the 𝑥′  and 𝑠  denote the mean value and standard deviation, respectively. It turned out that the 

improvement of recognition accuracy related to the best multimodal feature fusion (𝑥′ = 82.1%, 𝑠 = 6.05) 

and PDF (𝑥′ = 88.4%, 𝑠 = 6.33)  is significant (𝑝 < 0.01) with large effect size (𝑑 < 1.01) . For the 

unimodal approach and PDF, the effect size increases even up to 𝑑 < 3.46. 

 

Table 4. Recognition results of PDF, compared with best uni- and multimodal (feature 

level fusion) results. 
 

 

6. Conclusion  

In this paper, we presented trimodal approach for automatic emotion recognition using a novel parametric 

decision fusion. From unimodal to trimodal we investigated the impact of additional modality on recognition 

accuracy and compared the classification performance between common feature- and decision-level fusion. It 

turned out that bimodal approach (regardless of which combination) always improves recognition accuracy of 

unimodal approach, while the performance of trimodal approach varies strongly depending on the individual. 

In line with previous works in literature, feature-level fusion outperformed by far common decision-level 

fusion. Based on the observations we proposed a novel fusion method, called parametric decision fusion (PDF), 

and showed its potential and effectiveness with the significantly improved recognition accuracies for subject-

dependent and subject-independent case as well. As a future work remains evaluating PDF with extended 

number of subjects and modalities in order to improve it as a generalizable solution for multimodal fusion. 
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