• 제목/요약/키워드: cross-sectional ratio

검색결과 788건 처리시간 0.023초

야간수익률의 횡단면 주식수익률에 대한 예측력 (Predictability of Overnight Returns on the Cross-sectional Stock Returns)

  • 전용호
    • 아태비즈니스연구
    • /
    • 제11권4호
    • /
    • pp.243-254
    • /
    • 2020
  • Purpose - This paper explores whether overnight returns measured from the last closing price to today's opening price explain the cross-section of stock returns. Design/methodology/approach - This study is conducted using the Korean stock market data from 1998 to 2018, obtained from DataGuide database. The analysis begins with portfolio-level tests, followed by firm-level cross-sectional regressions. Findings - First, when decile portfolios sorted on the daily average of overnight returns in the previous months, the highest decile portfolio exhibits a significant negative risk-adjusted return. This suggests that stocks with higher average overnight returns are temporarily overvalued due to buying pressure from investors. Second, at least 6 months of persistence exists in average overnight returns, which is in line with the results reported by Barber, Odean and Zhu (2009) that investor sentiment persists over several weeks. Finally, Fama-MacBeth cross-sectional regression of expected returns after controlling for a variety of firm characteristic variables such as firm size, book-to-market ratio, market beta, momentum, liquidity, short-term reversal, the slope coefficient for overnight returns remains negative and statistically significant. Research implications or Originality - Overall, the evidence consistently suggests that overnight return is considered as a new priced factor in the cross-section of expected returns. The findings of this paper not only adds to finance literature, but also could be useful to practitioners in making stock investment decision.

전단변형이 양단고정 변단면 기둥의 좌굴하중에 미치는 영향 (Effects of Shear Deformations on Buckling Loads of Tapered Columns with Both Clamped Ends)

  • 이병구;이태은;안대순
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2000년도 봄 학술발표회논문집
    • /
    • pp.92-99
    • /
    • 2000
  • The nondimensional differential equations governing the buckling loads of tapered columns with both clamped ends and its boundary conditions are derived, in which the effects of shear deformations are included. These equations are solved numerically using a numerical integration technique and a bracketing method to obtain the buckling loads of columns. Four types of cross-sectional shape are considered in the numerical examples. The parametric studies of shear deformation effects on the buckling loads such as cross-sectional shape factor, shear coefficient, ratio of modulus of elasticity, slenderness ratio and section ratio are reported in tables and figures.

  • PDF

전단변형이 변단면기둥의 좌굴하중에 미치는 영향 (Effects of Shear Deformations on Buckling Loads of Tapered Columns)

  • 이병구
    • 한국농공학회지
    • /
    • 제36권4호
    • /
    • pp.56-63
    • /
    • 1994
  • The nondimensional differential equations governing the buckling loads of tapered columns and its houndarv conditions are derived, in which the effects of shear deformations are included. These equations are solved numerically using a numerical integration technique and a bracketing method to obtain the buckling loads of columns. Four types of cross-sectional shape with clamped-free end constraint are used in the numerical examples. The parametric studies of shear deformation effects on the buckling loads such as cross-sectional shape factor, shear coefficient, ratio of modulus of elasticity, slenderness ratio and section ratio are reported in tables and figures.

  • PDF

DCOC를 이용한 RC 프레임의 최소경비설계 (Minimum Cost Design of Reinforced Concrete Frames Using DCOC)

  • 한상훈;구봉근;조홍동;오현수
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2000년도 봄 학술발표회 논문집
    • /
    • pp.485-490
    • /
    • 2000
  • This paper describes the application of discretized continuum-type optimality criteria (DCOC) for minimum-cost design of the reinforced concrete frame structures consisting of beams and columns. The cost of construction as objective function which includes the costs of concrete, reinforced steel and formwork is minimized. The design constraints include limits on the maximum deflection at a prescribed node, bending and shear strengths in beams, uniaxial bending strength of columns according to design codes(CEB/FIP, 1990). In the first stage, only beams with uniform cross-sectional parameters per span are considered. But the steel ratio is allowed to vary freely. The cross-sectional parameters and steel ratio in each column are assumed to be uniform for practical reasons. Optimality criteria is given based on the well known Kuhn-Tucker necessary conditions, followed by an iterative procedure for designs when the design variables are the depth and the steel ratio. The versatility of the DCOC technique has been demonstrated by considering numerical examples which have one-bay four-storey frame.

  • PDF

알루미늄 합금 피로 스트라이에이션의 나노 스케일 관찰 (Nano-Scale Observation of Fatigue Striations for Aluminum Alloy)

  • 최성종;권재도
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2000년도 춘계학술대회논문집A
    • /
    • pp.153-158
    • /
    • 2000
  • Atomic Force Microscope (AFM) was used to study cross sectional profiles and dimensions of fatigue striations in 2017-T351 aluminum alloy. Their widths (SW) and heights $(SH,\;SH_h)$ were measured from the cross sectional Profiles of three-dimension AFM images. The following results that will be helpful to understand the fatigue crack growth mechanism were obtained. (1) Coincidence of the crack growth rate with the striation width was found down to the growth rate of $10^{-5}$ mm/cycle. (2) The relation of $SH={\alpha}(SW)^{1.2}$ was obtained. (3) The ratio of the striation height to its width SH/SW and did not depend on the stress intensity factor range ${\Delta}K$ and the stress ratio R. From these results, the applicability of the AFM to nano-fractography is discussed.

  • PDF

단면현상에 따른 벽식구조 전단벽의 구조성능 평가 (Structural Performance of Shearwall with Sectional Shape in Wall-type Apartment Buildings)

  • 한상환;오영훈;오창학;이리형
    • 콘크리트학회논문집
    • /
    • 제12권4호
    • /
    • pp.3-14
    • /
    • 2000
  • Structural performance of the walls subjected to lateral load reversals depends on various parameters such as loading history, sectional shape, reinforcement, lateral confinement, aspect ratio, axial compression, etc. Thus, the performance of the shearwall for wall-type apartment should be evaluated properly considering above parameters. This study investigates the effect of sectional shape on the structural performance of the wall. Sectional shape of the specimen is rectangular, barbell and T. Based on this experimental results, all specimens behaved as ductile fashion and failed by concrete crushing of the compression zone. Deformation index of those specimens evaluated better than 3 of ductility ratio, and 1.5% of deformability specified by seismic provision. Moreover, the performance of the rectangular shaped specimen, whose compression zone was confined with U-bar and cross tie, was as good as the barbell shaped specimen. Therefore, if we considered construction practice such as workmanship and detailing, shearwall with rectangular section may be more economical lateral load resisting system.

철근콘크리트 T형 벽체의 내진성능 영향인자에 관한 해석적 연구 (A theoretical study on the factors for the seismic performance of RC T-shaped walls)

  • 하상수;최창식;오영훈;이리형
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2002년도 가을 학술발표회 논문집
    • /
    • pp.521-526
    • /
    • 2002
  • The seismic performance of structural walls subjected to the cyclic lateral loads are influenced by various factors, like sectional shape, aspect ratio, reinforcement ratio, arrangement of reinforcement, and axial load ratio etc. In this research, reinforced concrete structural walls with the T-shaped cross section were selected. The seismic performance of T-shaped wall was affected by the many (actors because T-shaped wall is irregular wall composed to two rectangular walls. Especially the seismic performance of T-shaped wall varies with the flange condition and the various factors including the flange condition were determined. Therefore, the objective of this study is to understand the factors to improve seismic performance of RC T-shaded tv using sectional analysis.

  • PDF

Effects of frequency ratio on bridge aerodynamics determined by free-decay sectional model tests

  • Qin, X.R.;Kwok, K.C.S.;Fok, C.H.;Hitchcock, P.A.
    • Wind and Structures
    • /
    • 제12권5호
    • /
    • pp.413-424
    • /
    • 2009
  • A series of wind tunnel free-decay sectional model dynamic tests were conducted to examine the effects of torsional-to-vertical natural frequency ratio of 2DOF bridge dynamic systems on the aerodynamic and dynamic properties of bridge decks. The natural frequency ratios tested were around 2.2:1 and 1.2:1 respectively, with the fundamental vertical natural frequency of the system held constant for all the tests. Three 2.9 m long twin-deck bridge sectional models, with a zero, 16% (intermediate gap) and 35% (large gap) gap-to-width ratio, respectively, were tested to determine whether the effects of frequency ratio are dependent on bridge deck cross-section shapes. The results of wind tunnel tests suggest that for the model with a zero gap-width, a model to approximate a thin flat plate, the flutter derivatives, and consequently the aerodynamic forces, are relatively independent of the torsional-to-vertical frequency ratio for a relatively large range of reduced wind velocities, while for the models with an intermediate gap-width (around 16%) and a large gap-width (around 35%), some of the flutter derivatives, and therefore the aerodynamic forces, are evidently dependent on the frequency ratio for most of the tested reduced velocities. A comparison of the modal damping ratios also suggests that the torsional damping ratio is much more sensitive to the frequency ratio, especially for the two models with nonzero gap (16% and 35% gap-width). The test results clearly show that the effects of the frequency ratio on the flutter derivatives and the aerodynamic forces were dependent on the aerodynamic cross-section shape of the bridge deck.

압축력비와 수직철근비에 따른 RC T형 벽체의 구조성능 평가에 관한 해석적 연구 (Evaluation of Structural Performance of RC T-shaped Walls with Different ratios of axial load and vertical reinforcement)

  • 하상수;최창식;이리형
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2003년도 봄 학술발표회 논문집
    • /
    • pp.403-408
    • /
    • 2003
  • The objective of this study is to understand the variables affected the confinement for the transverse reinforcement of the reinforced concrete structural walls with the T-shaped cross section subjected to cyclic lateral loads. The structural performance of T-shaped walls was advanced by the transverse reinforcement which restrained the concrete subjected to compressive stress. If the arrangement of transverse reinforcement was not suitable for the confinement, T-shaped walls happened the brittle failure by web crushing or bucking of vertical reinforcement at the compression zone. It is necessary to confine transverse reinforcement in order to prevent the these failure. But the location of neutral axis and the magnitude of ultimate strain vary according to the section shape, a ratio of axial load, a ratio of wall cross sectional area to the floor-plan area, an aspect ratio and the reinforcement ratio. Therefore, the objective of this research is to grasp the location of neutral axis and the range which needs for the confinement of transverse reinforcement through the results of the sectional analysis which varies the ratio of axial load and the ratio of vertical reinforcement.

  • PDF

Effect of performance method of sand compaction piles on the mechanical behavior of reinforced soft clay

  • Kwon, Jeonggeun;Kim, Changyoung;Im, Jong-Chul;Yoo, Jae-won
    • Geomechanics and Engineering
    • /
    • 제14권2호
    • /
    • pp.175-185
    • /
    • 2018
  • Sand Compaction Piles (SCPs) are constructed by feeding and compacting sand into soft clay ground. Sand piles have been installed with irregular cross-sectional shapes, and mixtures of both sand and clay, which violate the design requirement of circular shape according to the replacement area ratio due to various factors, including side flow pressure. Therefore, design assumptions cannot be satisfied according to the conditions of the ground and construction and the replacement area ratio. Two case histories were collected, examined, and interpreted in order to study the effect of the shape of SCPs. The effects of the distortion of SCP shape and the mixture of sand and clay were studied with the results of large direct shear tests. The design internal friction angle was secured with the irregular cross-sectional sand piles regardless of the replacement area ratio. The design internal friction angle was secured regardless of mixed condition when the mixture of sand and clay was higher than the replacement area ratio of 65%. Therefore, systematic construction management is recommended with a replacement area ratio below 65%.