• Title/Summary/Keyword: cross-sectional area method

Search Result 352, Processing Time 0.028 seconds

Analysis of HTS Current Lead with Variable Area (단면적 변화를 가지는 고온초전도체 전류도입선 해석)

  • 문성수;설승윤
    • Proceedings of the Korea Institute of Applied Superconductivity and Cryogenics Conference
    • /
    • 2000.02a
    • /
    • pp.22-25
    • /
    • 2000
  • To improve the performance of high temperature superconducting current leads, variable cross-sectional area is considered. The cross-sectional area is varied as a function of current density to fix the safety factor along lead length. New integration method is devised to find optimum cross-sectional area distribution. New design of current lead has low heat leak into cryostat and less material than constant cross-sectional area leads. Conduction cooled lead is considered. The developed method is applied to Bi2223 current leads sheathed Ag-Au alloy.

  • PDF

Improvement of Cross-section Estimation Method for Flood Stage Analysis in Unmeasured Streams (미계측 하천의 홍수위 해석을 위한 단면 추정 기법 개선)

  • Jun, Sang Min;Hwang, Soon Ho;Song, Jung-Hun;Kim, Si Nae;Choi, Soon-Kun;Kang, Moon Seong
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.61 no.4
    • /
    • pp.11-22
    • /
    • 2019
  • The objective of this study was to improve the cross-sectional area and height estimation method using stream width. Stream water levels should be calculated together to simulate inundation of agricultural land. However, cross-sectional survey data of small rural rivers are insufficient. The previous study has developed regression equations between the width and the cross-sectional area and between the width and the height of stream cross-section, but can not be applied to a wide range of stream widths. In this study, cross-sectional survey data of 6 streams (Doowol, Chungmi, Jiseok, Gam, Wonpyeong, and Bokha stream) were collected and divided into upstream, midstream and downstream considering the locations of cross-sections. The regression equations were estimated using the complete data. $R^2$ between the stream width and cross-sectional area was 0.96, and $R^2$ between width and height was 0.81. The regression equations were also estimated using divided data for upstream, midstream and downstream considering the locations of cross-sections. The range of $R^2$ between the stream width and cross-sectional area was 0.86 - 0.91, and the range of $R^2$ between width and height was 0.79 ? 0.92. As a result of estimating the cross-sections of 6 rivers using the regression equations, the regression equations considering the locations of cross-sections showed better performance both in the cross-sectional area and height estimation than the regression equations estimated using the complete data. Hydrologic Engineering Center - River Analysis System (HEC-RAS) was used to simulate the flood stage analysis of the estimated and the measured cross-sections for 50-year, 100-year, and 200-year frequency floods. As a result of flood stage analysis, the regression equations considering the locations of cross-sections also showed better performance than the regression equations estimated using the complete data. Future research would be needed to consider the factors affecting the cross-sectional shape such as river slope and average flow velocity. This study can be useful for inundation simulation of agricultural land adjacent to an unmeasured stream.

Image Analysis of the Luster of Fabrics with Modified Cross-section Fibers

  • Shin Kyung In;Kim Seong Hun;Kim Jong Jun
    • Fibers and Polymers
    • /
    • v.6 no.1
    • /
    • pp.82-88
    • /
    • 2005
  • We have investigated the luster of modified cross-sectional fiber fabrics as one of the essential quality estimates for clothing development. We have confirmed an objective evaluation method, and have determined the experimental luster char­acteristics of modified cross-section fibers. The cross-section of the fibers in a fabric affects the appearance of a textile. We used the image analysis method to investigate the luster to determine the critical factors influencing the appearance of modi­fied cross-section fiber fabrics. For similarly structured textiles in a component fabric, clear differences were observed in the fabric weave, density, percentage, and total area of blobs, which is image region. Color played a decisive role in the luster of the textiles, and luster was not significantly influenced by the modified cross-section fabric weave. In addition, the degree of luster did not increase in the order plain to twill to satin for modified cross-sectional fiber fabrics. All the split-type microfi­bers exhibited higher numerical luster values (percentage of pixels, and number and total area of blobs) than sea-island microfibers did. The degree of luster of the modified cross-sectional fiber fabrics was not high at specular reflection angles.

Effect of Tube Area on the Impulse Wave Discharged from the Exit of Tube (관출구로부터 방출되는 펄스파에 미치는 관단면적의 영향)

  • Shin, Hyun-Dong;Lee, Young-Ki;Kim, Heuy-Dong
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.544-549
    • /
    • 2003
  • When a shock wave arrives at an open end of tube, an impulse wave is discharged from the tube exit and causes serious noise and vibration problems. In the current study, the effect of the cross-sectional area of tube on the impulse wave is numerically investigated using a CFD method. The Harten-Yee's total variation diminishing(TVD) scheme is used to solve the axisymmetric, two-dimensional, unsteady, compressible Euler equations. With three different cross-sectional areas of tube, the Mach number of the incident shock wave $M_{s}$ is varied between 1.01 and 1.5. The results obtained show that the directivity and magnitude of impulse wave strongly depend upon the Mach number of incident shock wave and are influenced by the tube area. It is also known that the tube cross-sectional area significantly affects the magnitude of impulse wave at or near the tube axis.

  • PDF

Prediction Model of the Exit Cross Scetional Shape in Round-Oval -round Pass Rolling

  • Lee, Young seog;Gert Goldhahn
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.2 no.1
    • /
    • pp.87-93
    • /
    • 2001
  • A reliable analytic model that determines the exit cross sectional shape a workpiece(material) in round-oval (oroval-round) pass sequence has been developed. The exit cross sectional shape of an outgoing workpiece is predicted by using the linear interpolation of the radius of curvature of an incoming workpiece and that of roll groovw to the roll axis direction. The requirements placed on the choice of the weighting function were to ensure boundary conditions specified. The validity of the analytic model has been examined by not rod rolling experiment with the roll gap and specimen size changed. The exit cross sectional shape and area of the workpiece predicted by the proposed analytic model were good agreement with those obtained experimentally. We found that the analytic model has not only simplicity and accuracy for practical usage but also save a large amount of computational time compared with finite element method.

  • PDF

Optimal Design of Steel Frameworks with Displacement and Stress Constraints (변위 및 응력제약을 받는 철골구조물의 최적설계)

  • 정영식;정진현
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1996.10a
    • /
    • pp.288-295
    • /
    • 1996
  • This work presents an optimality criteria method applicable io the design of plane frames with I-shape sections. All kinds of constraints are treated properly to ensure the mathematical rigour of the method as ever. Among the various properties of a section, the cross-sectional area is chosen as the design variable associated with the member. Then other properties, moment of inertia and depth, are determined from the cross-sectional area using relationships established in advance from the sectional data for AISC standard W shapes. The optimality criteria established in this work is perfect in mathematical terms provided that the relationships between properties of a section are correct. A redesign algorithm is derived relying heavily on the Newton-Raphson method to solve the system of nonlinear constraint equations. A worked example is also Presented.

  • PDF

Optimum design of prestressed concrete beams by a modified grid search method

  • Cagatay, Ismail H.;Dundar, Cengiz;Aksogan, Orhan
    • Structural Engineering and Mechanics
    • /
    • v.15 no.1
    • /
    • pp.39-52
    • /
    • 2003
  • A computer program has been developed for the optimum design of prestressed concrete beams under flexure. Optimum values of prestressing force, tendon configuration, and cross-sectional dimensions are determined subject to constraints on the design variables and stresses. 28 constraints have been used including flexural stresses, cover requirement, the aspect ratios for top and bottom flanges and web part of a beam and ultimate moment. The objective function contains cost of concrete, prestressing force and formwork. Using this function, it is possible to obtain minimum cost design, minimum weight or cross-sectional area of concrete design and minimum prestressing force design. Besides the idealized I-shaped cross-section, which is widely used in literature, a general I-shaped cross-section with eight geometrical design variables are used here. Four examples, one of which is available in the literature and the others are modified form of it, have been solved for minimum cost and minimum cross-sectional area designs and the results are compared. The computer program, which employs modified grid search optimization method, can assist a designer in producing efficient designs rapidly and easily. Considerable savings in computational work are thus made possible.

Analysis of Age-related Distribution of the Tracheal Diameter and Cross-sectional Area Among Koreans -Compuerized Tomographic Measurement- (한국인의 연령별 기관 내경 및 단면적 분포에 대한 분석 -흉부전산화단층촬영을 이용한 측정-)

  • Lee, Gun;Kim, Dae-Sik;Moon, Seung-Chul;Koo, Won-Mo;Yang, Jin-Young;Lee, Hyeon-Jae;Lim, Chang-Young;Han, Hyeon;Kim, Kwang-Ho;Sun, Kyung
    • Journal of Chest Surgery
    • /
    • v.32 no.5
    • /
    • pp.442-447
    • /
    • 1999
  • Introduction: Understanding the normal distribution of the tracheal diameter and crross- sectional area is one of the key elements in the management of various tracheal pathologies or tracheal reconstruction for the patients in growing age. However, data for Korean standard has been lacking. This study was designed to analyze retrospectively the distribution of tracheal diameter and cross-sectional area in young Koreans, which can afford fundamental data for the management of tracheal diseases. Material and Method: Of the patients who underwent computerized tomogram of the chest between May 1996 and August 1998, one hundred six young patients(age range: 0-20 years) were included. Patients with any conditions which might affect the tracheal cross-sectional area or diameter, such as tracheal disease, previous operation, mediastinal tumor, or obstructive lung disease were excluded from the study. Gender distribution was 69 males and 37 females. Tracheal diameters, anterior-posterior and transverse, were measured at the level of the thoracic inlet(level I) and the aortic arch(level II). Types of the trachea were divided into round, oval, or horseshoe shaped on cross-sectional view, and the dimension was calculated by using the equation of A=1/4$\pi$ab(A; area, $\pi$; 3.14, a; anterior-posterior diameter, b; transverse diameter). We analyzed the distribution of the diameter at each level and compared the cross-sectional area with respect to age and gender. A p-value lower than 0.05 wa considered significant. Result: The trachea of patients less than 5 years old were round in shape at both of level I and II, and no differences in cross-sectional area was observed between the levels(p=NS). As the age increased, the trachea become oval in shape at level I while it remained round in shape at level II(p=0.020). The tracheal diameter and cross-sectional area increased as the age increased with a linear correlation(r>0.9). In patients less than 5 years of age, female patients showed larger cross-sectional area than male patients (p=0.020), and it was reversed in patients older than 15 years of age(p=0.002). Conclusion: From the above results, we suggest chest computerized tomogram as a safe and reliable tool in measuring the tracheal diameter and cross-sectional area. We also provide the data as a standard for distribution of the tracheal diameter and cross-sectional area in young Korean population.

  • PDF

Prediction of Stress Free Surface Profile of Wrokpiece in Rod Rolling Process (선재압연공정의 소재 자유표면 형상예측)

  • Lee, Youngseog;Kim, Young-Ho;Jin, Young-Eun
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.9
    • /
    • pp.174-180
    • /
    • 2000
  • A reliable analytic model that determines the cross sectional shape of a workpiece(material) in round-oval(or oval-round) pass sequence has been developed. the cross sectional shape of an outgoing workpiece is predicted by using the linear interpolation of the radius of curvature of an incoming workpiece and that of roll groove to the roll axis direction. The requirements we placed on the choice of the weighting function were to ensure boundary conditions specified. The validity of the analytic model has been examined by hot rod rolling experiment with the roll gap and specimen size changed. The cross sectional shape and area of a workpiece predicted by the proposed analytic model were good agreement with those obtained experimentally. It was found that the analytic model has not only simplicity and accuracy for practical usage but also save a large amount of computational time compared with finite element method.

  • PDF

Numerical Study on the Turbulent Flow in the 180^{\circ}$ Bends Decreasing Cross-sectional Aspect Ratio (단면의 폭이 감소하는 180^{\circ}$ 곡덕트 내 난류유동의 수치해석적 연구)

  • 김원갑;최영돈
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.14 no.12
    • /
    • pp.1056-1062
    • /
    • 2002
  • This paper reports the characteristics of the three dimensional turbulent flow in the 180 degree bends with decreasing cross-sectional area by numerical method. Calculated pressure and velocity, Reynolds stress distributions are compared to the experimental data. Turbulence model employed are low Reynolds number k-epsilon model and algebraic stress model. The results show that the main vortex generated from the inlet part of the bend maintained to outlet of the bend because of the contraction of cross-sectional area. The rate of increase of turbulent kinetic energy through the bend are lower than that of mean flow. Secondary flow strength of the flow is lower about 60% than that of square duct flow.