• Title/Summary/Keyword: cross-section deformation

Search Result 273, Processing Time 0.021 seconds

An Experimental Study on the Flexural Behavior for the Slabs using the Suspending Deck plate (매닮 데크플레이트를 이용한 슬래브의 휨거동에 관한 연구)

  • Bae, Kyu Woong;Lee, Sang Sup;Park, Keum Sung
    • Journal of Korean Society of Steel Construction
    • /
    • v.25 no.1
    • /
    • pp.25-34
    • /
    • 2013
  • The purpose of the this paper is experimentally to investigate flexural behavior of slabs with suspending the deck plate. The main experimental parameters are the depth and thickness of the deck plate, slab span, rebar and support conditions. Total number of six specimens were tested and manufactured in slabs under vertical load. Based on the results of the test, the flexural behavior for slabs is determined according to the vertical deformation of the slabs, regardless of the main experimental parameters. Bending rebar reinforcement in the rib cross-section specimens can be evaluated significantly higher initial stiffness, crack stiffness and flexural strength. Result of the comparison of the theory value appeared to be fairly well matched to average 1.05.

Behavior of Flexible Hose Connected to Mother Ship (모함에 연결된 탄성 호스의 거동)

  • Kim, Kun-Woo;Lee, Jae-Wook;Kim, Hyung-Ryul;Yoo, Wan-Suk;An, Deuk-Man
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.35 no.3
    • /
    • pp.235-240
    • /
    • 2011
  • A flexible hose attached to a mother ship experiences various motions that depend on the movement of the mother ship and that of underwater vehicle. Although the motion of the hose is a very important factor that determines how a mother ship should be steered in a real situation, it is difficult to experimentally obtain information about the hose motion. Therefore, we study the motion of the hose analytically. The ANCF(absolute nodal coordinate formulation) was used to model the hose, because this formulation can relax the Euler-Bernoulli theory and the Timoshenko beam theory and allow the deformation of the cross section. The mother ship is assumed to be a rigid body with 6 degrees of freedom. The motion of the hose is predominantly affected by the behavior of the mother ship and by the fluid flow.

Cyclic Loading Tests for Prefabricated Composite Columns Using Steel Angle and Reinforcing Bar (PSRC 합성기둥의 반복가력 실험)

  • Hwang, Hyeon Jong;Eom, Tae Sung;Park, Hong Gun;Lee, Chang Nam;Kim, Hyoung Seop
    • Journal of Korean Society of Steel Construction
    • /
    • v.25 no.6
    • /
    • pp.635-647
    • /
    • 2013
  • PSRC composite column is a concrete encased steel angle column. In the PSRC composite column, the steel angles placed at the corner of the cross-section resists bending moment and compression load. In the present study, using the performance criteria in KBC 2009, cyclic lateral loading test was performed for PSRC columns to verify the seismic performance. The test parameters were the column type, the use of continuous hoop, and the use of studs for steel angle. 2/3 scale specimens of a conventional composite column and three PSRC columns were tested. The test results showed that the load-carrying capacity predicted by KBC 2009 correlated well with the test results. The specimens also exhibited good deformation and energy dissipation capacities. After concrete cover spalling under cyclic loading, the load-carrying capacity were decreased by buckling of longitudinal bars and steel angles. When continuous hoop was used, the deformability of the PSRC column was improved, preventing early buckling of the steel angles.

Structural Deflection Analysis of Robot Manipulator for Removing Nuclear Fuel Rod in Nuclear Reactor Vessel (원자로내 핵연료봉 제거 로봇 구조물의 휨변형구조해석)

  • 권영주;김재희
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1999.04a
    • /
    • pp.203-209
    • /
    • 1999
  • In this study, the structural deflection analysis of robot manipulator for removing nuclear fuel rod from nuclear reactor vessel is performed by using general purpose finite element code (ANSYS). The structural deflection analysis results reported in this study is very required for the accurate design of robot system. The structural deflection analysis for the manipulator's structural status at which the gripper grasps and draws up the nuclear fuel rod is done, For this beginning structural status of robot manipulator's removing motion, the reaction forces at each joint have static maximum values as reported in the reference(6), and so these forces may cause the maximum deflection of robot structure. The structural deflection analysis is performed for selected four working cases of the proposed structural model and results on deformation, stress for the manipulator's solid body and the deflection at the end of robot manipulator's gripper are calculated. And further, the same analysis is performed for the slenderer manipulator with cross section reduced by one-fifth of each side length of proposed model. The analysis is performed not only for the nuclear fuel rod with weight load of 300kg but also for nuclear fuel rods with weight loads of 100kg, 200kg, 400kg and 500kg. The static structural deflection analysis results show that the deflection value increases as the load increases and the largest value (corresponding to the weight load of 500kg in case 1) is much smaller than the gap distance between nuclear fuel rods. but the largest value for the slenderer manipulator is almost as large as the gap distance, Hence, conclusively, the proposed manipulator's structural model is acceptably safe for mechanical design of robot system.

  • PDF

A Comparative Study Wooden Stupa of Korea, Japan and China(I) - Focused on the Corner Bracket Set - (한.중.일 목조 불탑의 비교론적 고찰(I) - 귀공포를 중심으로 -)

  • Cheon, Deuk-Youm;Yang, Tae-Hyeon;Lee, Jae-Yeon
    • Journal of architectural history
    • /
    • v.21 no.2
    • /
    • pp.7-20
    • /
    • 2012
  • As the corner of wooden pagoda forms the roof by closely bordering left and right eaves on the various purlins and angle rafters, it is designed for every face to be recognized as front whose structure system increases load to bear proportionally. The corner of wooden pagoda is inseparable with the corner bracket set as it becomes stable thanks to the corner bracket set structurally and load burden under restrained structure makes the corner bracket set really important. Accordingly, this study could figure out some facts by analyzing corner bracket sets of Palsangjeon of Beobjusa Temple in Korea, Seokgatap of Bulgungsa Temple in China and Ojungtap of Beobryungsa Temple in Japan which were constructed with pure wooden structure. This study demonstrated that corner bracket set played a pivotal role in keeping balance of concentrated load of corner (corner of opening) in each floor that contributed to the stability of wooden pagoda structurally despite multiple duplications of floors and also figured out the outfit of corner bracket set was subject to the floor type and the cross section of Gongpo installed on top of Pyeongju. Wooden pagodas in 3 countries were two floor types of octagon and square, and employed different connection method between upper and lower floors. The difference between floor and duplication method determines the method of corner, but even different methods were sufficient to have entirety in every side by completing dynamic principle of corner bracket set even though old method had to solve the problem of concentrated load and it also confirms that it was essential Gongpo to prevent any deformation of corner.

Development of PC Double Wall for Staircase Construction (계단실 공사를 위한 PC Double Wall 공법 개발)

  • Suh, Jung-Il;Park, Hong-Gun;Hwang, Hyeon-Jong;Im, Ju-Hyuk;Kim, Yong-Nam
    • Journal of the Korea Institute of Building Construction
    • /
    • v.14 no.6
    • /
    • pp.571-581
    • /
    • 2014
  • In the present study, hollow precast concrete wall (PC Double Wall) for staircase construction was developed. Comparing the conventional walls, the PC Double Wall can be reduced the lift weight using hollow core and improves the integrity between the PC members. The cross-section and re-bar details of the PC Double Wall were developed considering precast concrete manufacturing, constructability, and the structural safety. Particularly, a form system was developed to manufacture thin and hollow core PC wall efficiently. A mock-up test for a staircase using the PC Double wall was performed to verify the constructability and integrity of the PC walls. The test result verified that joint deformation and cracking did not occur as showing good constructability.

Dielectric and Piezoelectric Properties in Multilayer Ceramic Actuator (적층형 세라믹 액츄에이터의 유전 및 압전특성)

  • Choi, Hyeong-Bong;Jeong, Soon-Jong;Ha, Mun-Su;Koh, Jung-Hyuk;Lee, Dae-Su;Song, Jae-Sung
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.07b
    • /
    • pp.615-618
    • /
    • 2004
  • The piezoelectricity and polarization of multilayer ceramic actuators, being designed to stack ceramic layer and electrode layer alternately, were investigated under a consideration of geometry, the thickness ratio of the ceramic layer to electrode layer The actuators were fabricated by tape-casting of $0.42PbTiO_3-0.38PbZrO_3-0.2Pb(Mn_{1/3}Nb_{2/3})O_3$ followed by laminating, burn-out and co-firing process. The actuators of $5\times5mm^2$ in area were formed in a way that $60{\sim}200{\mu}m$ thick ceramics were stacked 10 times alternately with $5{\mu}m$ thick electrode. Increase in polarization and electric field-displacement with increasing thickness ratio of the ceramic/electrode layer and thickness/cross section ratio were attributed to the change of $non-180^{\circ}/180^{\circ}$ domain ratio which was affected by the interlayer internal stress and Poisson ratio of ceramic layer. The piezoelectricity and actuation behaviors were found to be dependent upon the volume ratio (or thickness ratio) of ceramic layer relative to ceramic layer. Concerning with the existence of internal stress, the field-induced polarization and deformation were described in the multilayer actuator.

  • PDF

Development of Eddy Current Test Probe for Profilometry Inspection of Tube (원형튜브 단면형상검사용 와전류탐촉자 개발)

  • Lee, H.J.;Nam, M.W.;Lee, C.H.
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.17 no.4
    • /
    • pp.262-269
    • /
    • 1997
  • An eddy current probe ($8{\times}1$ multiple-element, surface scan) was successfully designed and fabricated at the KEPRI using the impedance equivalent circuit theory. The probe is intended for the detection of circumferential deformations (cross-section view) of the heat exchanger tubing that can occur due to corrosion, erosion, and denting. Optimum design parameters providing the highest sensitivity and signal-to-noise ratio, such as the coil dimensions, electrical characteristics, and test frequencies, were determined based on initial laboratory experiments conducted on the test specimen (SS304 tubing: OD : 9.68mm, wall-thickness : 0.47mm) containing artificial flaws (e.g., dents and corroded surface on tube OD) using the available Zetec-made probe. Using this parameters, a new probe was made and tested on an unknown specimen. The result indicated that the new probe is capable of detecting the circumferential deformation with the error of ${\pm}0.2%$ (0.022mm) of the tube O.D.

  • PDF

Reinforced fibrous recycled aggregate concrete element subjected to uniaxial tensile loading

  • Hameed, R.;Hasnain, K.;Riaz, M. Rizwan;Khan, Qasim S.;Siddiqi, Zahid A.
    • Advances in concrete construction
    • /
    • v.9 no.2
    • /
    • pp.195-205
    • /
    • 2020
  • In this study, effect of recycled aggregates and polypropylene fibers on the response of conventionally reinforced concrete element subjected to tensile loading in terms of tension stiffening and strain development was experimentally investigated. For this purpose, concrete prisms of 100 × 100 mm cross section and 500 mm length having one central deformed steel re-bar were cast using fibrous and non-fibrous Recycled Aggregate Concrete (RAC) with varying percentages of recycled aggregates (0%, 25%, 50%, 75% and 100%) and tested under uniaxial tensile load. For all fibrous RAC mixes, polypropylene fibers were used at constant dosage of 3.15 kg/㎥. Effect of recycled aggregates and fibers on the compressive strength of concrete was also explored in this study. Through studying tensile load versus global axial deformation of composite and strain development in concrete and steel, it was found that replacement of natural aggregates with recycled aggregates in concrete negatively affected the cracking load, tension stiffening and strain development, and this negative effect was observed to be increased with increasing contents of recycled aggregates in concrete. The results of this study showed that it was possible to minimize the negative effect of recycled aggregates in concrete by the addition of polypropylene fibers. Reinforced concrete element constructed using concrete containing 50% recycled aggregates and polypropylene fibers exhibited cracking behavior, tension stiffening and strain development response almost similar to that of concrete element constructed using natural aggregate concrete without fiber.

Effects of Wave-Current Interactions on 3-D Flow Fields in a River Mouth (하구에서 파랑-흐름 상호작용이 3차원 흐름특성에 미치는 영향)

  • Lee, Woo-Dong;Jeon, Ho-Seong;Park, Jong-Ryul;Hur, Dong-So
    • Journal of Ocean Engineering and Technology
    • /
    • v.31 no.1
    • /
    • pp.36-46
    • /
    • 2017
  • Most of the studies on the hydraulic characteristics of wave-current interaction have used 2-D hydraulic experiments or 2-D numerical simulations. However, it is difficult to understand the wave-current interaction found in actual estuaries using these. Therefore, a numerical water tank was constructed in this study to perform simulations involving a 3-D river mouth. The result showed a change in the water surface at the river mouth from the wave-current interaction. With an increase in the ratio ($V_c/C_i$) between the river current and wave celerity, the wave height and mean water level of the river increased at the wave and current meeting point. A higher $V_c/C_i$ caused a stronger wave-current interaction and increased the turbulence kinetic energy. Thus, the wave height attenuation became larger by the wave-current interaction with a higher $V_c/C_i$. In addition, it was possible to understand the flow characteristics in the vicinity of the river mouth as a result of the wave-current interaction using the mean flow and mean time-averaged velocity at the mid-cross section of river.