DOI QR코드

DOI QR Code

Behavior of Flexible Hose Connected to Mother Ship

모함에 연결된 탄성 호스의 거동

  • Kim, Kun-Woo (School of Mechanical Engineering, Pusan Nat'l Univ.) ;
  • Lee, Jae-Wook (School of Mechanical Engineering, Pusan Nat'l Univ.) ;
  • Kim, Hyung-Ryul (Agency for Defense Development) ;
  • Yoo, Wan-Suk (School of Mechanical Engineering, Pusan Nat'l Univ.) ;
  • An, Deuk-Man (School of Mechanical Engineering, Pusan Nat'l Univ.)
  • Received : 2010.06.15
  • Accepted : 2011.01.10
  • Published : 2011.03.01

Abstract

A flexible hose attached to a mother ship experiences various motions that depend on the movement of the mother ship and that of underwater vehicle. Although the motion of the hose is a very important factor that determines how a mother ship should be steered in a real situation, it is difficult to experimentally obtain information about the hose motion. Therefore, we study the motion of the hose analytically. The ANCF(absolute nodal coordinate formulation) was used to model the hose, because this formulation can relax the Euler-Bernoulli theory and the Timoshenko beam theory and allow the deformation of the cross section. The mother ship is assumed to be a rigid body with 6 degrees of freedom. The motion of the hose is predominantly affected by the behavior of the mother ship and by the fluid flow.

모함에 연결되어 통신 케이블의 가이드 역할을 하는 탄성 호스는 모함의 운동 조건을 결정하는 중요한 인자이다. 길이가 수 십 미터에 달하는 탄성 호스를 실제 상황에서 실험을 하기에는 어려움이 있으므로 해석을 통해 거동 특성을 분석하고자 한다. 탄성 호스는 곡률 반경에 대한 변형뿐만 아니라 축 방향에 대한 변형도 발생하므로, 축 방향에 대한 변형 구배가 좌표계에서 유도되는 절대 절점 좌표계로 모델링하였으며, 연속체 역학 개념을 도입함으로써 대변형 효과를 표현하도록 하였다. 탄성 호스의 끝 단에 연결된 모함은 강체 모델로 표현하였고, 조향각에 의해 운동이 결정되도록 하였다. 또한, 수중에서 호스가 거동할 때 발생하는 유체 저항력을 고려함으로써 수중에서의 탄성 호스 거동 특성을 분석 하였다.

Keywords

References

  1. Hover, F. S., Grosenbaugh, M. A. and Triantafyllou, M. S., 1994, “Calculation of Dynamic Motions and Tensions in Towed Underwater Cables,” IEEE Journal of Ocean Engineering, Vol. 19, No. 3, pp. 449-457. https://doi.org/10.1109/48.312921
  2. Jordan, M. A. and Bustamante, J. L., 2008, “Guidance of Underwater Vehicles with Cable Tug Perturbations under Fixed and Adaptive Control System,” IEEE Journal of Ocean Engineering, Vol. 33, No. 4, pp. 579-598. https://doi.org/10.1109/JOE.2008.2005595
  3. Omar, M. A. and Shabana, A. A., 2001, Applicaion of the Absolute Nodal Co-ordinate Formulation to Multibody System Dynamics, Journal of Sound and Vibration, Vol. 214, No. 5, pp. 833-851.
  4. Shabana, A. A., 2008, Computational Continuum Mechanics, Cambridge University Press.
  5. Berzeri, M. and Shabana, A. A., 2000, “Development of Simple Models for the Elastic Forces in the Absolute Nodal Co-ordinate Formulation,” Journal of Sound and Vibration, Vol. 235, No. 4, pp. 539-565. https://doi.org/10.1006/jsvi.1999.2935
  6. Shabana, A. A. and Yakoub, R. Y., 2001, “Three Dimensional Absolute Nodal Coordinate Formulation for Beam Elements: Theory,” Transactions of the ASME , Vol.123, pp. 606-613. https://doi.org/10.1115/1.1410100
  7. Yakoub, R. Y. and Shabana, A. A., 2001, “Three Dimensional Absolute Nodal Coordinate Formulation for Beam Elements: Implementation and Applications,” Transactions of the ASME, Vol. 123, pp. 614-621. https://doi.org/10.1115/1.1410099
  8. Van Berlekom, W. B. and Goddard, T. A., 1972, Maneuvering of Large Tankers, Transactions of SNAME, Vol. 80, pp. 264-298.
  9. Fossen, T. I., 1994, “Guidance and Control of Ocean Vehicles,” John Wiley & Sons Ltd.
  10. Rhee, K. P., Yoon, H. K., Sung, Y. J., Kim, S. H. and Kang, J. N., 2000,“An Experimental Study on Hydrodynamic Coefficients of Submerged Body Using Planar Motion Mechanism and Coning Motion Device,” International Workshop on Ship Maneuverability, pp. 1-20.
  11. Shabana, A. A. and Schwertassek, R., 1997, “Equivalence of the Floating Frame of Reference Approach and Finite Element Formulations,” International Journal of Non-Linear Mechanics, Vol. 33, No. 3, pp. 417-432.
  12. Berzeri, M., Campanelli, M. and Shabana, A.A., 2001, “Definition of the Elastic Forces in the Finite-Element Absolute Nodal Coordinate Formulation and the Floating Frame of Reference Formulation,” Multibody System Dynamics, Vol. 5, pp. 21-54. https://doi.org/10.1023/A:1026465001946