• 제목/요약/키워드: cross-laminated timber (CLT)

검색결과 38건 처리시간 0.02초

Numerical Simulation on Disproportionate Collapse of the Tall Glulam Building under Fire Conditions

  • Zhao, Xuan;Zhang, Binsheng;Kilpatrick, Tony;Sanderson, Iain
    • 국제초고층학회논문집
    • /
    • 제10권4호
    • /
    • pp.311-321
    • /
    • 2021
  • Perception of the public to structural fires is very important because there are only a number of tall timber buildings constructed in the world. People are hesitating to accept tall timber buildings, so it is essential to ensure the first generation of tall timber buildings to a very high standard, especially fire safety. Right now, there are no specific design standards or regulations for fire design of tall timber buildings in Europe. Even though heavy timber members have better fire resistance than steel components, many conditions still need to be verified before considering the use of timber materials, e.g. fire spread, post-fire collapse, etc. This research numerically explores the structural behaviours of a tall Glulam building when one of its internal Glulam (Glued laminated timber) columns fails after sustaining a full 120-min standard fire and is removed from the established finite element building model created in SAP2000. The numerical results demonstrate that the failure and removal of the selected internal Glulam column may lead to the local failure of the adjacent CLT (Cross laminated timber) floor slabs, but will not lead to large disproportionate damage and collapse of the whole building. Here, the building is assumed to be located in Glasgow, Scotland, UK.

구조용 집성판(CLT)-콘크리트 경계면의 전단성능 평가 (Shear Performance Evaluation at the Interface Between CLT and Concrete)

  • 박금성
    • 한국공간구조학회논문집
    • /
    • 제21권3호
    • /
    • pp.35-42
    • /
    • 2021
  • An experimental study was carried out to evaluate the shear performance at the interface composed of structural laminates and concrete. The main variables are the number of CLT layers and the shape of the shear connector. The number of CLT layers consisted of 3 and 5 layers. A total of 6 test specimens for shear performance evaluation were prepared in the form of a shear connector, a direct screw type and a vertically embedded type. As a result of the experiment, similar behavior was shown in all specimens, regardless of the number of layers, including direct screw type (SC series) and vertically embedded type (VE series). The behavior at the joint surface was damaged due to the occurrence of initial shear cracks, expansion of shear groove cracks, and splaying at the interface after the maximum load.After the maximum load, the shear strength decreased gradually due to the effect of the shear connector. It can be seen that the shear strength of all specimens is determined by shear and compression stress failure of concrete at the interface of the notch joint.

경사못이 적용된 CLT-콘크리트 접합부의 하중전달능력 (Load Bearing Capacity of CLT - Concrete Connections with Inclined Screws)

  • 김경태;김종호
    • 대한건축학회논문집:구조계
    • /
    • 제34권4호
    • /
    • pp.3-13
    • /
    • 2018
  • Load bearing capacity of dowel type fasteners loaded perpendicular to the shear plane is determined based on Johansen's yield theory (Johansen, 1949). In case of inclined screws whose axis is no longer perpendicular, the ultimate load of connection increases because of additional axial withdrawal capacity. To calculate load bearing capacity for inclined screws, KBC2016 and Eurocode5 provide design equations using the combination of two effects; axial and bending strength. Although their equations have been validated for a long time, there is still minimal information how to apply them for concrete-CLT joints. Since there are not many test data available, engineers have to make certain assumptions and thus results may look inconsistent in practice. In this paper, authors would like to describe the current approach and assumptions indicated by KBC2016 and Eurocode 5 and how they match the experimental results in terms of shear strength of CLT-concrete connections. To fulfill the objective, several push-out tests were performed on nine different test specimens. Each specimen has different penetration angles and depths. By analyzing load-displacement curves, the maximum shear strength, stiffness, and ductility were obtained. Shear strength values were compared with the current design codes and theoretical equations proposed in this paper. Observations on stiffness and ductility were briefly discussed.

페놀레조시놀공축합수지로 접착된 국산 잣나무의 목리방향별 전단성능평가 (Evaluation of Shear Strength by Direction of Wood Grain for Korean Pine Using PRF Adhesive)

  • 박선향;김광모;방성준;공진혁;이상준
    • Journal of the Korean Wood Science and Technology
    • /
    • 제45권3호
    • /
    • pp.243-249
    • /
    • 2017
  • 본 연구는 국산 잣나무를 활용한 구조용집성판(cross laminated timber; CLT) 제조 기술 확립을 위한 일환으로 구조 용집성판 제작 시 접착조건을 구명하기 위해 수행되었다. 페놀레조시놀공축합수지(phenol resorcinol formaldehyde; PRF) 접착제를 적용하여 도포량과 압체압력 조건을 달리하여 목리가 수직 또는 수평한 경우의 전단시험에 의해 접착 강도를 확인하였다. 실험결과, 적정 접착조건은 도포량 $250g/m^2$, 압체압력 0.8 MPa로 결정하였다. 목리방향별 접착력에 있어서는 목리를 수직방향으로 접착할 때 평행하게 접착된 경우보다 낮은 값을 보였다. 이는 목리를 수직방향으로 접착한 시험편의 경우 다수가 롤링전단에 의해 파괴된 것과 연관이 있는 것으로 판단되었다. 한편 목리가 수평한 방향으로 접착된 경우, 국내외 기준에서 제시하고 있는 전단접착 강도 기준을 만족하였으며 목리가 수직한 방향으로 접착한 경우 국외 기준에 제시된 기준을 만족하였다. 본 연구에서 도출된 최적 접착조건을 적용하여 국산 잣나무 구조용집성판 제조 시 국내외 기준에 준하는 접착성능 확보가 가능할 것이며, 또한 도출 데이터는 구조용집성판 및 구조용집성재 제조 시 참고 데이터로 활용될 수 있을 것이다.

Ply-lam CLT의 합판 접합방식에 따른 휨 성능 평가 (Evaluation of Flexural Performance According to the Plywood Bonding Method of Ply-Lam CLT)

  • CHOI, Gyu Woong;YANG, Seung Min;LEE, Hyun Jae;KIM, Jun Ho;CHOI, Kwang Hyeon;KANG, Seog Goo
    • Journal of the Korean Wood Science and Technology
    • /
    • 제49권2호
    • /
    • pp.107-121
    • /
    • 2021
  • 본 연구에서는 층재 수종과 길이방향의 합판 접합방식과 접합부의 접착제 도포 여부에 따른 휨 성능 및 파괴 양상 분석을 통하여 합판을 코어로 사용한 CLT에 적합한 합판의 접합 방식을 최적화 하고자 하였다. 더글라스 퍼 층재의 경우 길이방향 접합에 의해 휨탄성계수 약 11.5% 감소, 휨강도는 접착제 도포 및 접합방식에 따라 증가 또는 감소하였다. 접착제 미도포 butt joint, 접착제 도포 half lap joint, butt joint 조건이 최적조건으로 도출 되었다. 낙엽송 층재의 경우 길이방향 접합에 의해 휨강도는 약 15%, 휨탄성계수는 약 40% 감소하였으며 접합방식에 따른 차이를 나타내지 않았다. half lab joint와 tongue & groove joint 사용 시 합판 층의 접합부에서 휨에 파괴를 1차적으로 방지해줌으로써 중층의 층재로 전달되는 하중을 감소시켜 주는 것으로 판단된다. 본 연구 결과를 통해 Ply-lam CLT 제조과정에서 낙엽송 층재를 사용하는 경우 접합방법에 따른 차이를 나타내지 않았으며 더글라스퍼 층재를 사용할 경우 butt joint와 half lap 접합 방식이 적합할 것으로 판단된다.

Analysis of Airtightness and Air Leakage of Wooden Houses in Korea

  • Kim, Sejong;Chang, Yoon-Seong;Park, Joo-Saeng;Shim, Kug-Bo
    • Journal of the Korean Wood Science and Technology
    • /
    • 제45권6호
    • /
    • pp.828-835
    • /
    • 2017
  • Airtightness of buildings is one of critical aspects of its energy performance. To build up references of airtightness of wooden houses built in Korea, blower door tests have been carried out in 42 houses since 2006. Causes of air leakage were investigated recently. The average value of air change rate was $3.7h^{-1}$ for light frame house and $5.5h^{-1}$ for post-beam construction at ACH50 (air change per hour at 50 Pa air pressure difference). Foam type insulation was more advantageous in ensuring building airtightness than glass fiber batt. Airtightness of wooden houses which were constructed after 2010 was improved to have less than $1.5h^{-1}$ of ACH50, threshold for application of artificial air change. The average air change rate of CLT (cross laminated timber) houses showed the lowest value, $1.1h^{-1}$, among the tested structures.

Effects of Density, Temperature, Size, Grain Angle of Wood Materials on Nondestructive Moisture Meters

  • Pang, Sung-Jun;Jeong, Gi Young
    • Journal of the Korean Wood Science and Technology
    • /
    • 제47권1호
    • /
    • pp.40-50
    • /
    • 2019
  • The aim of this study was to investigate the effects of density, temperature, size, and grain direction on measurement of moisture contents (MC) of wood materials non-destructively. The MC of different sizes of solid wood, glulam, and CLT from larch (larix kaempferi, $560kg/m^3$) and pine (pinus koraiensis, $430kg/m^3$) were measured using the dielectric type and resistance type meters. The specimens were conditioned in the environmental chamber to be equilibrium moisture content (EMC) of 12 % and 19 %. When density setting in dielectric type meter was increased from $400kg/m^3$ to $600kg/m^3$, the MCs of specimen (S-L-100-E) were decreased from 13.4 % to 11.3 %. However, when wood group (WG) setting in resistance type meter was changed from WG1 to WG4, the measured MCs were increased from 9.2 % to 12.3 %. When temperature setting in resistance type meters was changed from 0 to $35^{\circ}C$, the MC was decreased from 17.0 % to 13.0 %. The MCs measured by dielectric type meter for larger specimens (S-L-100-E_11.3 %, G-L-240-E_11.7 % and C-L-120-E_12.8 %) were higher than those of small size specimens (S-L-30-E_8.7 %, G-L-150-E_10.3 %, and C-L-90-E_9.7 %). The MCs measured by resistance type meter for larger specimens (G-L-240-E_11.6 % and C-L-120-E_13.3 %) were also higher than those of small size specimens (G-L-150-E_10.4 %, and C-L-90-E_11.8 %). The resistance type meter was not affected by the grain direction but the dielectric type meter were affected by the grain direction. The MC measured by resistance type meter for G-L-120-E perpendicular to grain direction was 11.5 % and the measured MC parallel to grain direction was 11.3 %. The MC measured by dielectric type meter parallel to grain direction (12.1 %) was higher than that measured perpendicular to grain direction (10.7 %).

집성재 라미나용 낙엽송 재내 잔류 건조응력 변화 분석 (Analysis of residual drying stress in Larix Kaempferi wood used as glulam laminar)

  • 한연중;장윤성;박용건;정기영;홍정표;이전제;여환명
    • Journal of the Korean Wood Science and Technology
    • /
    • 제41권6호
    • /
    • pp.535-543
    • /
    • 2013
  • 본 연구에서 국산 낙엽송재의 공학목재로의 이용가능성, 특히 교호집성재 라미나로서의 이용가능성을 확인하기 위하여 열기건조 중과 건조 후 판재 내 잔류응력을 분석하였다. 연구결과를 통해 이쿼라이징 처리에 의한 함수율 동일화 효과가 증명되었고, 컨디셔닝 처리에 의한 잔류응력의 감소효과가 정량화되었다. 건조 중 목재 내 잔류응력 분석을 위하여 프롱법과 슬라이스법을 실시하였다. 프롱 제작 후 표면경화율을 측정하였고, 슬라이스의 절단 후 탄성변형량을 기준으로 표면으로부터 약 10 mm 깊이까지의 건조응력을 정량적으로 분석하였다. T10-C4와 T12-D5 열기건조 스케줄 적용 시 열기건조 중 판재 표면의 인장응력과 압축응력은 모두 2.2 MPa을 넘지 않음을 확인하였다. 낙엽송의 횡단방향 인장강도와 압축강도가 평균 2.65 MPa, 4.60 MPa인 점을 고려하면, 더욱 강한 건조스케줄 적용이 추천된다. 건조 후처리에 의해 폭굽음과 비틀림을 약 40% 줄일 수 있었다.