• Title/Summary/Keyword: cross section data analysis

Search Result 369, Processing Time 0.027 seconds

A Study on Body Shape for 3D Virtual Body Shape Transformation - Focusing on the Women with age of forties - (3차원 가상바디 변형을 위한 체형연구 - 40대 여성을 대상으로 -)

  • Shin, Ju-Young Annie;Nam, Yun-Ja
    • Fashion & Textile Research Journal
    • /
    • v.17 no.2
    • /
    • pp.265-277
    • /
    • 2015
  • The aim of this study was to successfully reflect human body changes on the transformation of the virtual body within 3D virtual fitting spaces. For this purpose, existing problems of shape transformation of the virtual body were analyzed and regression equations which provides useful basic data for transformation of the virtual body that can be applied usefully to the 3D virtual fitting system was developed. Necessary data for the analyses were body measurement and 3D scan data of women with average physical form between the ages of 40 through 49. The reason that we used human body changes of the female subjects in their forties was based on the recognition that fundamental female body changes start to occur from age of forty. Body shapes were largely divided into 3 groups according to obesity which was found to be the biggest factor of shape change. Seven factors were extracted based on factor analysis of 47 body measurement categories and regression equations were created to extract specific measurements for each BMI group based on these seven factors. The major contribution of this paper can be summarized as follows. First, the regression equations to extract specific measurements based on the 7 representative variables remediated existing problem of virtual bodies as it increased the number of body shape transformation areas. Second, the regression equations helped to overcome the problem of current failing to reflecting changes in body cross-section shape based on simple girth measurements based on analysis of cross-section distances.

Idiosyncratic Volatility, Conditional Liquidity, and Cross-section of Stock Returns in Korea (고유변동성, 조건부 유동성, 그리고 주식수익률의 횡단면에 관한 연구)

  • Yun, Sang-Yong;Cho, Seong-Soon;Park, Soon-hong
    • Asia-Pacific Journal of Business
    • /
    • v.12 no.1
    • /
    • pp.121-134
    • /
    • 2021
  • Purpose - This study examines whether flight-to-liquidity (FTL) explains the dynamic liquidity risk on stock returns, and whether it has a significant influence on determinants the cross-section of stock returns. Design/methodology/approach - This study suggests a new risk factor, dynamic liquidity hedge portfolio (DLP), to reflect the dynamic impact of liquidity risk on stock returns and the Fama-MacBeth 2 stage regression analysis is employed in order to analyze the data. Findings - First, the DLP factor shows more positive and significant beta for the small or illiquidity stocks. Second, the DLP shows a different influence than SMB (size risk factor), HML (value risk factor), NMP (liquidity risk factor), FTVOL (total volatility factor) in determining the cross-section of stock returns. In addition, the DLP has a statistically significant risk premium of around 5%, which is relatively larger than other risk factors. Research implications or Originality - This study has academic value in terms of newly confirming that the DLP factor has a more significant impact on cross-sectional determination of stock returns than other risk factors by proposing a conditional liquidity factor that can explain the FTL phenomenon.

Cross-Sectional Structural Stiffness Prediction Model for Rotor Blade Based on Deep Neural Network (심층신경망 기반 회전익 블레이드의 단면 구조 강성 예측 모델)

  • Byeongju Kang;Seongwoo Cheon;Haeseong Cho;Youngjung Kee;Taeseong Kim
    • Journal of Aerospace System Engineering
    • /
    • v.18 no.1
    • /
    • pp.21-28
    • /
    • 2024
  • In this paper, two prediction models based on deep neural network that could predict cross-sectional stiffness of a rotor blade were proposed. Herein, we employed structural and material information of cross-section. In the case of a prediction model that used material properties as the input of the network, it was designed to predict the cross-sectional stiffness by considering elastic modulus of each cross-sectional member. In the case of the prediction model that used structural information as a network input, it was designed to predict the cross-sectional stiffness by considering the location and thickness of cross-sectional members as network input. Both prediction models based on a deep neural network were realized using data obtained by cross-sectional analysis with KSAC2D (Konkuk section analysis code - two-dimensional).

Multifield Variational Finite Element Sectional Analysis of Composite Beams

  • Dhadwal, Manoj Kumar;Jung, Sung Nam
    • Composites Research
    • /
    • v.30 no.6
    • /
    • pp.343-349
    • /
    • 2017
  • A multifield variational formulation is developed for the finite element (FE) cross-sectional analysis of composite beams. The cross-sectional warping displacements and sectional stresses are considered to be the primary variables through the application of Reissner's partially mixed principle. The warping displacements are modeled using generic FE shape functions with nonlinear distribution over the beam section. A generalized Timoshenko level stiffness matrix is derived which incorporates the effects of elastic couplings, transverse shear, and Poisson's deformations. The accuracy of the present analysis is validated for the stiffness constants and elastostatic responses of composite box beams which correlate well with the experimental data and other state-of-the-art approaches.

Constructing Panel Data Using Repeated Cross-sectional Survey Data : A Case of Farm Household Survey and Its Analysis (반복횡단면자료의 패널화에 대한 연구: 농가경제조사의 경우)

  • Kang, Seog-Hoon;Bang, Tae-Kyung
    • Survey Research
    • /
    • v.12 no.2
    • /
    • pp.89-112
    • /
    • 2011
  • This study shows the results of constructing panel data using Farm Household survey and presents some examples of empirical application. This study shows that ex post constructed panel data using repeated cross-sectional survey can be used in various dynamic analyses. This paper also shows that the well known difficult problem of longitudinal weights can be easily solved by using the existing cross-sectional weights in original cross-section data. Based on these results, we propose that the National Statistical Office not only try to construct panel data, but also construct panel data by using existing repeated cross-section data. The benefits of this approach seems to be very big in establishment survey.

  • PDF

Theoretical analysis of rotary hyperelastic variable thickness disk made of functionally graded materials

  • Soleimani, Ahmad;Adeli, Mohsen Mahdavi;Zamani, Farshad;Gorgani, Hamid Haghshenas
    • Steel and Composite Structures
    • /
    • v.45 no.1
    • /
    • pp.39-49
    • /
    • 2022
  • This research investigates a rotary disk with variable cross-section and incompressible hyperelastic material with functionally graded properties in large hyperelastic deformations. For this purpose, a power relation has been used to express the changes in cross-section and properties of hyperelastic material. So that (m) represents the changes in cross-section and (n) represents the manner of changes in material properties. The constants used for hyperelastic material have been obtained from experimental data. The obtained equations have been solved for different m, n, and (angular velocity) values, and the values of radial stresses, tangential stresses, and elongation have been compared. The results show that m and n have a significant impact on disk behavior, so the expected behavior of the disk can be obtained by an optimal selection of these two parameters.

Propagation of radiation source uncertainties in spent fuel cask shielding calculations

  • Ebiwonjumi, Bamidele;Mai, Nhan Nguyen Trong;Lee, Hyun Chul;Lee, Deokjung
    • Nuclear Engineering and Technology
    • /
    • v.54 no.8
    • /
    • pp.3073-3084
    • /
    • 2022
  • The propagation of radiation source uncertainties in spent nuclear fuel (SNF) cask shielding calculations is presented in this paper. The uncertainty propagation employs the depletion and source term outputs of the deterministic code STREAM as input to the transport simulation of the Monte Carlo (MC) codes MCS and MCNP6. The uncertainties of dose rate coming from two sources: nuclear data and modeling parameters, are quantified. The nuclear data uncertainties are obtained from the stochastic sampling of the cross-section covariance and perturbed fission product yields. Uncertainties induced by perturbed modeling parameters consider the design parameters and operating conditions. Uncertainties coming from the two sources result in perturbed depleted nuclide inventories and radiation source terms which are then propagated to the dose rate on the cask surface. The uncertainty analysis results show that the neutron and secondary photon dose have uncertainties which are dominated by the cross section and modeling parameters, while the fission yields have relatively insignificant effect. Besides, the primary photon dose is mostly influenced by the fission yield and modeling parameters, while the cross-section data have a relatively negligible effect. Moreover, the neutron, secondary photon, and primary photon dose can have uncertainties up to about 13%, 14%, and 6%, respectively.

Generation and Benchmarking of a 69-group Cross Section Library for Thermal Reactor Applications (열중성자로 핵계산을 위한 69군 단면적 라이브러리 생산 및 검증)

  • Kim, Jung-Do;Lee, Jong-Tai;Gil, Choong-Sup;Kim, Hark-Rho
    • Nuclear Engineering and Technology
    • /
    • v.21 no.4
    • /
    • pp.245-258
    • /
    • 1989
  • A 69-group cross section library consisting of more than 130 materials was generated for thermal reactor applications using the NJOY nuclear data processing system and the recent version of evaluated nuclear data files available from IAEA Nuclear Data Section. The multigroup library was validated through the analysis of various criticality experiments and depletion results of PWR. When used with the WIMS-KAERI code, the average $K_{eff}$ obtained for 47 uranium-oxide and 41 uranium metal fueled critical configurations is 0.9997 with a standard deviation of 0.69 percent. The calculated burnup dependent isotopic inventories of uranium and plutonium generally show good agreement with measured values obtained from depleted PWR pins.s.

  • PDF

Framework for a general section designer software component

  • Anwar, Naveed;Kanok-Nukulchai, Worsak
    • Computers and Concrete
    • /
    • v.1 no.3
    • /
    • pp.303-324
    • /
    • 2004
  • The Component-Based Software Development (CBSD) has established itself as a sound paradigm in the software engineering discipline and has gained wide spread acceptance in the industry. The CBSD relies on the availability of standard software components for encapsulation of specific functionality. This paper presents the framework for the development of a software component for the design of general member cross-sections. The proposed component can be used in component-based structural engineering software or as a stand-alone program developed around the component. This paper describes the use-case scenarios for the component, its design patterns, object models, class hierarchy, the integrated and unified handling of cross-section behavior and implementation issue. It is expected that a component developed using the proposed patterns and model can be used in analysis, design and detailing packages to handle reinforced concrete, partially prestressed concrete, steel-concrete composite and steel sections. The component can provide the entire response parameters of the cross section including determination of geometric properties, elastic stresses, flexural capacity, moment-curvature, and ductility ratios. The component can also be used as the main computational engine for stand-alone section design software. The component can be further extended to handle the retrofitting and strengthening of cross-sections, shear and torsional response, determination of fire-damage parameters, etc.

Impact of molybdenum cross sections on FHR analysis

  • Ramey, Kyle M.;Margulis, Marat;Read, Nathaniel;Shwageraus, Eugene;Petrovic, Bojan
    • Nuclear Engineering and Technology
    • /
    • v.54 no.3
    • /
    • pp.817-825
    • /
    • 2022
  • A recent benchmarking effort, under the auspices of the Organization for Economic Cooperation and Development (OECD) Nuclear Energy Agency (NEA), has been made to evaluate the current state of modeling and simulation tools available to model fluoride salt-cooled high temperature reactors (FHRs). The FHR benchmarking effort considered in this work consists of several cases evaluating the neutronic parameters of a 2D prismatic FHR fuel assembly model using the participants' choice of simulation tools. Benchmark participants blindly submitted results for comparison with overall good agreement, except for some which significantly differed on cases utilizing a molybdenum-bearing control rod. Participants utilizing more recently updated explicit isotopic cross sections had consistent results, whereas those using elemental molybdenum cross sections observed reactivity differences on the order of thousands of pcm relative to their peers. Through a series of supporting tests, the authors attribute the differences as being nuclear data driven from using older legacy elemental molybdenum cross sections. Quantitative analysis is conducted on the control rod to identify spectral, reaction rate, and cross section phenomena responsible for the observed differences. Results confirm the observed differences are attributable to the use of elemental cross sections which overestimate the reaction rates in strong resonance channels.