Browse > Article
http://dx.doi.org/10.1016/j.net.2021.09.021

Impact of molybdenum cross sections on FHR analysis  

Ramey, Kyle M. (Nuclear and Radiological Engineering, Georgia Institute of Technology)
Margulis, Marat (Department of Engineering, University of Cambridge)
Read, Nathaniel (Department of Engineering, University of Cambridge)
Shwageraus, Eugene (Department of Engineering, University of Cambridge)
Petrovic, Bojan (Nuclear and Radiological Engineering, Georgia Institute of Technology)
Publication Information
Nuclear Engineering and Technology / v.54, no.3, 2022 , pp. 817-825 More about this Journal
Abstract
A recent benchmarking effort, under the auspices of the Organization for Economic Cooperation and Development (OECD) Nuclear Energy Agency (NEA), has been made to evaluate the current state of modeling and simulation tools available to model fluoride salt-cooled high temperature reactors (FHRs). The FHR benchmarking effort considered in this work consists of several cases evaluating the neutronic parameters of a 2D prismatic FHR fuel assembly model using the participants' choice of simulation tools. Benchmark participants blindly submitted results for comparison with overall good agreement, except for some which significantly differed on cases utilizing a molybdenum-bearing control rod. Participants utilizing more recently updated explicit isotopic cross sections had consistent results, whereas those using elemental molybdenum cross sections observed reactivity differences on the order of thousands of pcm relative to their peers. Through a series of supporting tests, the authors attribute the differences as being nuclear data driven from using older legacy elemental molybdenum cross sections. Quantitative analysis is conducted on the control rod to identify spectral, reaction rate, and cross section phenomena responsible for the observed differences. Results confirm the observed differences are attributable to the use of elemental cross sections which overestimate the reaction rates in strong resonance channels.
Keywords
Molten salt reactor (MSR); Fluoride salt cooled high temperature; reactor (FHR); Molybdenum cross section; Serpent; WIMS;
Citations & Related Records
연도 인용수 순위
  • Reference
1 D.E. Holcomb, D. Ilas, V.K. Varma, A.T. Cisneros, R.P. Kelly, J.C. Gehin, Core and Refueling Design Studies for the Advanced High Temperature Reactor, Oak Ridge National Laboratory, Oak Ridge, Tennessee, 2011. Report ORNL/TM-2011/365.
2 B. Petrovic, K. Ramey, I. Hill, Benchmark Specifications for the Fluoride-Salt High-Temperature Reactor (FHR) Reactor Physics Calculations: Phase 1-A and I-B: Fuel Element 2D Benchmark, vol. 5, Nuclear Science, OECD Publishing, Paris, France, 2020. NEA/NSC/R, 2021.
3 F. Rahnema, B. Petrovic, P. Singh, P. Burke, H. Noorani, X. Sun, G. Yoder, P. Tsvetkov, J. Zhang, D. Zhang, D. Ilas, "The Challenges in Modeling and Simulation of Fluoride Salt Cooled High Temperature Reactors," White Paper CRMP-2017-9-001, Georgia Institute of Technology, Atlanta, GA, USA, 2017.
4 M.B. Chadwick, P. Oblozinsky, M. Herman, N.M. Greene, R.D. McKnight, D.L. Smith, P.G. Young, R.E. MacFarlane, G.M. Hale, S.C. Frankle, A.C. Kahler, T. Kawano, R.C. Little, D.G. Madland, P. Moller, R.D. Mosteller, P.R. Page, ENDF/B-VII.0: next generation evaluated nuclear data library for nuclear science and technology, Nucl. Data Sheets 107 (12) (2006) 2931-3060.   DOI
5 P.K. Romano, N.E. Horelik, B.R. Herman, A.G. Nelson, B. Forget, K. Smith, OpenMC: a state-of-the-art Monte Carlo code for research and development, Ann. Nucl. Energy 82 (2015) 90-97.   DOI
6 A.J.M. Plompen, O. Cabellos, C. De Saint Jean, The joint evaluated fission and fusion nuclear data library, JEFF-3.3, The European Physical Journal A 56 (2020).
7 R.J. Howerton, F. Schmittroth, R.E. Schenter, Material 4200 Incident Neutron Data, National Nuclear Data Center, Jan 1990 [Online]. Available: https://www-nds.iaea.org/public/download-endf/ENDF-B-VI-8/NEUTRON/mat/endfb-vi-8_n_4200.txt. (Accessed 13 February 2021). Accessed.
8 O. Cabellos, Processing and validation of JEFF-3.1.2 cross-section library into various formats: ACE, PENDF, GENDF, MATXSR and BOXER, Nucl. Data Sheets 118 (2014) 456-458.   DOI
9 The ANSWERS Software Service, WIMS A Modular Scheme for Neutronics Calculations - User Guide for Version 10, ANSWERS/WIMS/REPORT/014, 2015.
10 M.B. Chadwick, M. Herman, P. Oblozinsky, M.E. Dunn, Y. Danon, A.C. Kahler, D.L. Smith, B. Pritychenko, G. Arbanas, R. Arcilla, R. Brewer, D.A. Brown, R. Capote, A.D. Carlson, Y.S. Cho, H. Derrien, K. Guber, G.M. Hale, P. Young, ENDF/B-VII.1 nuclear data for science and technology: cross sections, covariances, fission product yields and decay data, Nucl. Data Sheets 112 (12) (2011) 2887-2996.   DOI
11 D.A. Brown, M.B. Chadwick, R. Capote, A.C. Kahler, A. Trkov, M.W. Herman, A.A. Sonzogni, Y. Danon, A.D. Carlson, M. Dunn, D.L. Smith, G.M. Hale, G. Arbanas, R. Arcilla, C.R. Bates, B. Beck, B. Becker, F. Brown, Y. Zhu, ENDF/B-VIII.0: the 8th major release of the nuclear reaction data library with CIELO-project cross sections, new standards and thermal scattering data, Nucl. Data Sheets 148 (2018) 1-142.   DOI
12 XMAS LWPC 172-group structure [Online]. Available: http://serpent.vtt.fi/mediawiki/index.php/XMAS_LWPC_172-group_structure. (Accessed 7 February 2021). Accessed.
13 B. Petrovic, T. Flaspoehler, K. Ramey, Benchmarking FHR core physics simulations: 2D fuel assembly model, in: Proc. 12th Intl. Conf. On Nuclear Option in Countries with Small and Medium Electricity Grids, June 3-6, Zadar, Croatia, 2018.
14 B.A. Lindley, J.G. Hosking, D.J. Powney, B.S. Tollit, T.D. Newton, R. Perry, T.C. Ware, P.N. Smith, Current status of the reactor physics code WIMS and recent developments, Ann. Nucl. Energy 102 (2017) 148-157.   DOI
15 Table of Nuclides, Nuclear data center at KAERI [Online]. Available, http://atom.kaeri.re.kr/nuchart/#. (Accessed 7 February 2021).
16 P.N. Haubenreich, J.R. Engel, Experience with the molten-salt reactor experiment, Nucl. Appl. Technol. 8 (2) (1970) 118-136.   DOI
17 V.K. Varma, D.E. Holcomb, F.J. Peretz, E.C. Bradley, D. Ilas, A.L. Qualls, N.M. Zaharia, AHTR Mechanical, Structural, and Neutronic Preconceptual Design, Oak Ridge National Laboratory, Oak Ridge, Tennessee, 2012. Report ORNL/TM-2012/320.
18 B. Petrovic, K. Ramey, I. Hill, E. Losa, M. Elsawi, Z. Wu, C. Lu, J. Gonzales, D. Novog, G. Chee, K. Huff, M. Margulis, N. Read, E. Shwageraus, Preliminary results of the NEA FHR benchmark phase I-A and I-B (fuel element 2D benchmark), in: The International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering, Raleigh, NC, 2021.
19 J. Leppanen, et al., The Serpent Monte Carlo code: status, development and applications in 2013, Ann. Nucl. Energy 82 (2015) 142-150.   DOI
20 K.M. Ramey, B. Petrovic, Monte Carlo modeling and simulations of AHTR fuel assembly to support V&V of FHR core physics methods, Ann. Nucl. Energy 118 (2018) 272-282.   DOI
21 D.T. Ingersoll, C.W. Forsberg, L.J. Ott, D.F. Williams, J.P. Renier, D. Wilson, S.J. Ball, L. Reid, W.R. Corwin, G.D. Del Cul, P.F. Peterson, H. Zhao, P.S. Pickard, E.J. Parma, M. Vernon, Status of Preconceptual Design of the Advanced High-Temperature Reactor (AHTR), Oak Ridge National Laboratory, Oak Ridge, Tennessee, 2004. Report ORNL/TM-2004/104.