• 제목/요약/키워드: cross layer optimal

검색결과 62건 처리시간 0.025초

LCD 와 가시광선 LED 기반의 광조형 시스템을 위한 수지의 경화 특성 (Curing Characteristics for Projection Stereolithography based on LCD and Visible LED)

  • 김가영;하영명;박인백;김민섭;조광호;이석희
    • 한국정밀공학회지
    • /
    • 제30권8호
    • /
    • pp.878-884
    • /
    • 2013
  • Stereolithography can be classified into two main categories according to the cross-sectional shape: scanning type and projection type. Projection stereolithography has significant advantages when making a layer using a single patterned beam, and results in improved speed and accuracy. To implement relatively low-cost projection stereolithography, we developed a system using a commercially available resin, which cures on exposure to visible light. The optimum photoinitiator was investigated, as well as the mixing ratio. The viscosity, shrinkage, curing depth and tensile strength were evaluated through several experiments on fabricated three-dimensional structures, and thus an optimal resin selection system was developed.

OFDMA 시스템의 다중 사용자 스케줄링을 위한 순환지연 다이버시티의 지연값 결정 (Delay Determination of Cyclic Delay Diversity for Multi-user Scheduling in OFDMA Systems)

  • 임민중;허성호;송현주;임대운;정병장;노태균
    • 한국통신학회논문지
    • /
    • 제33권3A호
    • /
    • pp.248-255
    • /
    • 2008
  • OFDMA 시스템에서 주파수축에서의 다중사용자 스케줄링의 성능은 채널의 주파수 선택적 특성과 상관이 있다. 채널이 주파수축에서 평탄하면 다중사용자 스케줄링의 이득이 줄어들 수 있으며 반대로 주파수 선택적 특성이 너무 커서 할당 대역폭 내에서 채널의 변화가 심하게 일어난다면 충분한 스케줄링 이득을 얻기 어려워진다. 다중 사용자 스케줄링 이득을 최대화하기 위해서는 순환지연 다이버시티를 적용하여 채널의 주파수 선택적 특성을 조절할 수 있다. 이 논문에서는 할당 대역폭과 채널 특성을 고려하여 순환지연 다이버시티를 적용할 때의 최적의 지연값을 결정하는 방법을 제안한다.

Trust based Secure Reliable Route Discovery in Wireless Mesh Networks

  • Navmani, TM;Yogesh, P
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제13권7호
    • /
    • pp.3386-3411
    • /
    • 2019
  • Secured and reliable routing is a crucial factor for improving the performance of Wireless Mesh Networks (WMN) since these networks are susceptible to many types of attacks. The existing assumption about the internal nodes in wireless mesh networks is that they cooperate well during the forwarding of packets all the time. However, it is not always true due to the presence of malicious and mistrustful nodes. Hence, it is essential to establish a secure, reliable and stable route between a source node and a destination node in WMN. In this paper, a trust based secure routing algorithm is proposed for enhancing security and reliability of WMN, which contains cross layer and subject logic based reliable reputation scheme with security tag model for providing effective secured routing. This model uses only the trusted nodes with the forwarding reliability of data transmission and it isolates the malicious nodes from the providing path. Moreover, every node in this model is assigned with a security tag that is used for efficient authentication. Thus, by combining authentication, trust and subject logic, the proposed approach is capable of choosing the trusted nodes effectively to participate in forwarding the packets of trustful peer nodes successfully. The simulation results obtained from this work show that the proposed routing protocol provides optimal network performance in terms of security and packet delivery ratio.

An optimization framework for curvilinearly stiffened composite pressure vessels and pipes

  • Singh, Karanpreet;Zhao, Wei;Kapania, Rakesh K.
    • Advances in Computational Design
    • /
    • 제6권1호
    • /
    • pp.15-30
    • /
    • 2021
  • With improvement in innovative manufacturing technologies, it became possible to fabricate any complex shaped structural design for practical applications. This allows for the fabrication of curvilinearly stiffened pressure vessels and pipes. Compared to straight stiffeners, curvilinear stiffeners have shown to have better structural performance and weight savings under certain loading conditions. In this paper, an optimization framework for designing curvilinearly stiffened composite pressure vessels and pipes is presented. NURBS are utilized to define curvilinear stiffeners over the surface of the pipe. An integrated tool using Python, Rhinoceros 3D, MSC.PATRAN and MSC.NASTRAN is implemented for performing the optimization. Rhinoceros 3D is used for creating the geometry, which later is exported to MSC.PATRAN for finite element model generation. Finally, MSC.NASTRAN is used for structural analysis. A Bi-Level Programming (BLP) optimization technique, consisting of Particle Swarm Optimization (PSO) and Gradient-Based Optimization (GBO), is used to find optimal locations of stiffeners, geometric dimensions for stiffener cross-sections and layer thickness for the composite skin. A cylindrical pipe stiffened by orthogonal and curvilinear stiffeners under torsional and bending load cases is studied. It is seen that curvilinear stiffeners can lead to a potential 10.8% weight saving in the structure as compared to the case of using straight stiffeners.

Mechanics model of novel compound metal damper based on Bi-objective shape optimization

  • He, Haoxiang;Ding, Jiawei;Huang, Lei
    • Earthquakes and Structures
    • /
    • 제23권4호
    • /
    • pp.363-371
    • /
    • 2022
  • Traditional metal dampers have disadvantages such as a higher yield point and inadequate adjustability. The experimental results show that the low yield point steel has superior energy dissipation hysteretic capacity and can be applied to seismic structures. To overcome these deficiencies, a novel compound metal damper comprising both low yield point steel plates and common steel plates is presented. The optimization objectives, including "maximum rigidity" and "full stress state", are proposed to obtain the optimal edge shape of a compound metal damper. The numerical results show that the optimized composite metal damper has the advantages such as full hysteresis curve, uniform stress distribution, more sufficient energy consumption, and it can adjust the yield strength of the damper according to the engineering requirements. In view of the mechanical characteristics of the compound metal damper, the equivalent model of eccentric cross bracing is established, and the approximate analytical solution of the yield strength and the yield displacement is proposed. A nonlinear simulation analysis is carried out for the overall aseismic capacity of three-layer-frame structures with a compound metal damper. It is verified that a compound metal damper has better energy dissipation capacity and superior seismic performance, especially for a damper with double-objective optimized shape.

Preparation of Al2O3 Thin Films by Atomic Layer Deposition Using Dimethylaluminum Isopropoxide and Water and Their Reaction Mechanisms

  • An, Ki-Seok;Cho, Won-Tae;Sung, Ki-Whan;Lee, Sun-Sook;Kim, Yun-Soo
    • Bulletin of the Korean Chemical Society
    • /
    • 제24권11호
    • /
    • pp.1659-1663
    • /
    • 2003
  • $Al_2O_3$ thin films were grown on H-terminated Si(001) substrates using dimethylaluminum isopropoxide [DMAl: $(CH_3)_2AlOCH(CH_3)_2$], as a new Al precursor, and water by atomic layer deposition (ALD). The selflimiting ALD process by alternate surface reactions of DMAI and $H_2O$ was confirmed from measured thicknesses of the aluminum oxide films as functions of the DMAI pulse time and the number of DMAI-$H_2O$ cycles. Under optimal reaction conditions, a growth rate of ~1.06 ${\AA}$ per ALD cycle was achieved at the substrate temperature of $150\;^{\circ}C$. From a mass spectrometric study of the DMAI-$D_2O$ ALD process, it was determined that the overall binary reaction for the deposition of $Al_2O_3\;[2\;(CH_3)_2AlOCH(CH_3)_2\;+\;3\;H_2O\;{\rightarrow}\;Al_2O_3\;+\;4\;CH_4\;+\;2\;HOCH(CH_3)_2]$can be separated into the following two half-reactions: where the asterisks designate the surface species. Growth of stoichiometric $Al_2O_3$ thin films with carbon incorporation less than 1.5 atomic % was confirmed by depth profiling Auger electron spectroscopy. Atomic force microscopy images show atomically flat and uniform surfaces. X-ray photoelectron spectroscopy and cross-sectional high resolution transmission electron microscopy of an $Al_2O_3$ film indicate that there is no distinguishable interfacial Si oxide layer except that a very thin layer of aluminum silicate may have been formed between the $Al_2O_3$ film and the Si substrate. C-V measurements of an $Al_2O_3$ film showed capacitance values comparable to previously reported values.

딥러닝 학습에서 최적의 알고리즘과 뉴론수 탐색 (Optimal Algorithm and Number of Neurons in Deep Learning)

  • 장하영;유은경;김혁진
    • 디지털융복합연구
    • /
    • 제20권4호
    • /
    • pp.389-396
    • /
    • 2022
  • 딥러닝(Deep Learning)은 퍼셉트론을 기반으로 하고 있으며 현재에는 이미지 인식, 음성 인식, 객체 검출 및 약물 개발 등과 같은 다양한 영역에서 사용되고 있다. 이에 따라 학습 알고리즘이 다양하게 제안되었고 신경망을 구성하는 뉴런수도 연구자마다 많은 차이를 보이고 있다. 본 연구는 현재 대표적으로 사용되고 있는 확률적 경사하강법(SGD), 모멘텀법(Momentum), AdaGrad, RMSProp 및 Adam법의 뉴런수에 따른 학습 특성을 분석하였다. 이를 위하여 1개의 입력층, 3개의 은닉층, 1개의 출력층으로 신경망을 구성하였고 활성화함수는 ReLU, 손실 함수는 교차 엔트로피 오차(CEE)를 적용하였고 실험 데이터셋은 MNIST를 사용하였다. 그 결과 뉴런수는 100~300개, 알고리즘은 Adam, 학습횟수(iteraction)는 200회가 딥러닝 학습에서 가장 효율적일 것으로 결론을 내렸다. 이러한 연구는 향후 새로운 학습 데이터가 주어졌을 경우 개발될 알고리즘과 뉴런수의 기준치에 함의를 제공할 것이다.

적층 방식 3차원 프린팅에 의한 미세유로 칩 제작 공정에서 프린팅 방향 및 적층 두께의 영향에 관한 연구 (Study on Effect of the printing direction and layer thickness for micro-fluidic chip fabrication via SLA 3D printing)

  • 진재호;권다인;오재환;강도현;김관오;윤재성;유영은
    • Design & Manufacturing
    • /
    • 제16권3호
    • /
    • pp.58-65
    • /
    • 2022
  • Micro-fluidic chip has been fabricated by lithography process on silicon or glass wafer, casting using PDMS, injection molding of thermoplastics or 3D printing, etc. Among these processes, 3D printing can fabricate micro-fluidic chip directly from the design without master or template for fluidic channel fabricated previously. Due to this direct printing, 3D printing provides very fast and economical method for prototyping micro-fluidic chip comparing to conventional fabrication process such as lithography, PDMS casting or injection molding. Although 3D printing is now used more extensively due to this fast and cheap process done automatically by single printing machine, there are some issues on accuracy or surface characteristics, etc. The accuracy of the shape and size of the micro-channel is limited by the resolution of the printing and printing direction or layering direction in case of SLM type of 3D printing using UV curable resin. In this study, the printing direction and thickness of each printing layer are investigated to see the effect on the size, shape and surface of the micro-channel. A set of micro-channels with different size was designed and arrayed orthogonal. Micro-fluidic chips are 3D printed in different directions to the micro-channel, orthogonal, parallel, or skewed. The shape of the cross-section of the micro-channel and the surface of the micro-channel are photographed using optical microscopy. From a series of experiments, an optimal printing direction and process conditions are investigated for 3D printing of micro-fluidic chip.

LTCC 기반 ME Dipole 안테나 구조를 활용한 X-Band 용 8 × 4 이중편파 배열안테나에 관한 연구 (A Study on 8 × 4 Dual-Polarized Array Antenna for X-Band Using LTCC-Based ME Dipole Antenna Structure)

  • 정재웅;서덕진;유종인
    • 마이크로전자및패키징학회지
    • /
    • 제28권3호
    • /
    • pp.25-32
    • /
    • 2021
  • 본 논문에서는 X-Band 대역에서 이중 편파 특성을 갖는 Magneto-Electric(ME) dipole 배열안테나를 제안하고, 이를 Low Temperature Co-fired Ceramic (LTCC) 공정을 이용하여 구현 및 측정하였다. 제안된 배열안테나는 LTCC로 구성된 1 × 1 ME dipole 안테나 32 개를 Teflon PCB에 배열하여 8 × 4 배열 안테나로 구성된다. 1 × 1 ME dipole 안테나는 두 쌍의 방사체에서 각각 수직 편파와 수평 편파를 방사하여 이중 편파를 구현하게 된다. 2개의 Port 급전은 LTCC를 이용한 적층 공정을 통해 구현하였으며, 각 각의 Port는 포트 간 격리도를 확보하기 위해 Γ-shaped feeding strip을 통해 독립적으로 방사체에 급전된다. 안테나 배열에 사용된 Teflon PCB는 4층 구조로 형성하였으며, 상단 면과 하단 면을 통해 2개의 Port가 급전된다. 그리고 배열되는 안테나와 Teflon PCB의 임피던스 정합을 위해 Teflon PCB의 전송선로에 λg/4 변환기를 적용하였으며 시뮬레이션을 통해 최적 파라미터를 얻었다. 구현된 ME dipole 8 × 4 배열안테나의 크기는 15.5 mm × 11 mm × 4.2 mm이며, Port 1 급전 시 측정된 방사 최대 이득은 18.2 dBi, cross-pol은 1.0 dBi이고 Port 2 급전 시 측정된 방사 최대 이득은 18.1 dBi, Cross-pol은 3.2 dBi로 확인하였다.

초고속 용사 적용 고속 초고압 왕복동 펌프 플런저의 내구성 특성에 관한 연구 (A Study on Characteristics of Durability for Plunger of High Speed and Ultra-High Pressure Reciprocating Pump Using High Velocity Oxygen Fuel Spraying)

  • 배명환;박병호;정화;박희성
    • 한국자동차공학회논문집
    • /
    • 제22권5호
    • /
    • pp.20-28
    • /
    • 2014
  • The high velocity oxygen fuel spraying (HVOF) is a kind of surface modification process technology to form the sprayed coating layer after spraying the powder to molten or semi-molten state by the ultra-high speed at the high-temperature heat source and conflicting with a substrate. It is desirable to melt completely the thermal spray powder in order to produce the coating layer with an optimal adhesion, however, because a semi-molten powder in a spray process has the low efficiency and become a factor that degrades the mechanical property by the inducement of pore-forming within the coating layer. To improve the wear resistance, corrosion resistance and heat resistance, in this study, the plungers of high-speed and ultra-high pressure reciprocating hydraulic pumps for oil and water used in ironwork are produced with $420J_2$ and the coating layers of plungers are formed by the powders of WC-Co-Cr and WC-Cr-Ni including the high hardness WC. The surface of these plungers is modified by the super-mirror face grinding machine using variable air pressure developed in this laboratory, and then the characteristics of cross-sectional microstructure, and surface roughness and hardness values between no operation and 100 days-operation are examined and made a comparison. The fine tops and bottoms on surface roughness curve of oil-hydraulic pump plunger sprayed by WC-Cr-Ni are molded more and higher than those of water-hydraulic pump sprayed by WC-Co-Cr because the plunger diameter of oil-hydraulic pump is 0.4 times smaller than that of water-hydraulic pump and the pressure of oil-hydraulic pump exerted on the plunger is operated with the 70 bars higher than that of water-hydraulic pump. As a result, it is found that the values of centerline average surface roughness and maximum height for oil-hydraulic pump plunger are bigger than those of water-hydraulic pump plunger.