• Title/Summary/Keyword: cross combination

Search Result 569, Processing Time 0.024 seconds

Loading Path Optimization in Aluminum Tube Hydroforming using Response Surface Method (반응표면법을 이용한 알루미늄 튜브 하이드로포밍의 하중경로 최적화)

  • Lim, H.T.;Kim, H.J.;Kim, H.Y.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2007.05a
    • /
    • pp.314-317
    • /
    • 2007
  • Automotive rear subframe of aluminum tube was developed by using hydroforming process, based on the numerical analysis and physical tryouts. In the previous study, the effect of prebending was evaluated on the basis of forming limit diagram which had been obtained from free bulging, T-shape forming and cross-shape forming, using the developed tube hydroformability testing system. In order to get the sound products, appropriate internal pressure is to be imposed corresponding to the axial feeding. In this study, the loading path, the combination of internal pressure and axial feeding during the process, was optimized to ensure minimum thickness variation and dimensional accuracy, by using response surface method.

  • PDF

Static and Dynamic Instability Characteristics of Thin Plate like Beam with Internal Flaw Subjected to In-plane Harmonic Load

  • R, Rahul.;Datta, P.K.
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.14 no.1
    • /
    • pp.19-29
    • /
    • 2013
  • This paper deals with the study of buckling, vibration, and parametric instability characteristics in a damaged cross-ply and angle-ply laminated plate like beam under in-plane harmonic loading, using the finite element approach. Damage is modelled using an anisotropic damage formulation, based on the concept of reduction in stiffness. The effect of damage on free vibration and buckling characteristics of a thin plate like beam has been studied. It has been observed that damage shows a strong orthogonality and in general deteriorates the static and dynamic characteristics. For the harmonic type of loading, analysis was carried out on a thin plate like beam by solving the governing differential equation which is of Mathieu-Hill type, using the method of multiple scales (MMS). The effects of damage and its location on dynamic stability characteristics have been presented. The results indicate that, compared to the undamaged plate like beam, heavily damaged beams show steeper deviations in simple and combination resonance characteristics.

Sizing, geometry and topology optimization of trusses using force method and supervised charged system search

  • Kaveh, A.;Ahmadi, B.
    • Structural Engineering and Mechanics
    • /
    • v.50 no.3
    • /
    • pp.365-382
    • /
    • 2014
  • In this article, the force method and Charged System Search (CSS) algorithm are used for the analysis and optimal design of truss structures. The CSS algorithm is employed as the optimization tool and the force method is utilized for analysis. In this paper in addition to member's cross sections, redundant forces, geometry and topology variables are considered as the optimization variables. Minimum complementary energy principle is used directly to analyze the structure. In the presented method, redundant forces are calculated by the CSS in order to minimize the energy function. Combination of the CSS and force method leads to an efficient algorithm in comparison to some of the optimization algorithms.

Classification of Emotional States of Interest and Neutral Using Features from Pulse Wave Signal

  • Phongsuphap, Sukanya;Sopharak, Akara
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.682-685
    • /
    • 2004
  • This paper investigated a method for classifying emotional states by using pulse wave signal. It focused on finding effective features for emotional state classification. The emptional states considered here consisted of interest and neutral. Classification experiments utilized 65 and 60 samples of interest and neutral states respectively. We have investigated 19 features derived from pulse wave signals by using both time domain and frequency domain analysis methods with 2 classifiers of minimum distance (normalized Euclidean distanece) and ${\kappa}$-Nearest Neighbour. The Leave-one-out cross validation was used as an evaluation mehtod. Based on experimental results, the most efficient features were a combination of 4 features consisting of (i) the mean of the first differences of the smoothed pulse rate time series signal, (ii) the mean of absolute values of the second differences of thel normalized interbeat intervals, (iii) the root mean square successive difference, and (iv) the power in high frequency range in normalized unit, which provided 80.8% average accuracy with ${\kappa}$-Nearest Neighbour classifier.

  • PDF

Preparation and Properties of Silicone Hydrogel Material Containing Silane Group with Cobalt Oxide Nanoparticles through Thermal Polymerization

  • Lee, Min-Jae;Kong, Ki-Oh;Sung, A-Young
    • Korean Journal of Materials Research
    • /
    • v.30 no.6
    • /
    • pp.273-278
    • /
    • 2020
  • This research is conducted to analyze the compatibility of used monomers and produce the high functional hydrogel ophthalmic polymer containing silane and nanoparticles. VTMS (vinyltrimethoxysilane), TAVS [Triacetoxy(vinyl)silane] and cobalt oxide nanoparticles are used as additives for the basic combination of SilM (silicone monomer), MMA (methyl methacrylate) and MA (methyl acrylate). Also, the materials are copolymerized with EGDMA (ethylene glycol dimethacrylate) as cross-linking agent, AIBN (thermal polymerization initiator) as the initiator. It is judged that the lenses of all combinations are optically excellent and thus have good compatibility. Measurement of the optical and physical characteristics of the manufactured hydrophilic ophthalmic polymer are different in each case. Especially for TAVS, the addition of cobalt oxide nanoparticles increases the oxygen permeability. These materials are considered to create synergy, so they can be used in functional hydrogel ophthalmic lenses.

Advanced analysis for planar steel frames with semi-rigid connections using plastic-zone method

  • Nguyen, Phu-Cuong;Kim, Seung-Eock
    • Steel and Composite Structures
    • /
    • v.21 no.5
    • /
    • pp.1121-1144
    • /
    • 2016
  • This paper presents a displacement-based finite element procedure for second-order distributed plasticity analysis of planar steel frames with semi-rigid beam-to-column connections under static loadings. A partially strain-hardening elastic-plastic beam-column element, which directly takes into account geometric nonlinearity, gradual yielding of material, and flexibility of semi-rigid connections, is proposed. The second-order effects and distributed plasticity are considered by dividing the member into several sub-elements and meshing the cross-section into several fibers. A new nonlinear solution procedure based on the combination of the Newton-Raphson equilibrium iterative algorithm and the constant work method for adjusting the incremental load factor is proposed for solving nonlinear equilibrium equations. The nonlinear inelastic behavior predicted by the proposed program compares well with previous studies. Coupling effects of three primary sources of nonlinearity, geometric imperfections, and residual stress are investigated and discussed in this paper.

FE Analysis of Hydroforming Process for Flange Forming (액압 성형 공정 시 플랜지부 형성을 위한 FE 해석)

  • Choi, M.K.;Joo, B.D.;Moon, Y.H.
    • Transactions of Materials Processing
    • /
    • v.19 no.1
    • /
    • pp.32-37
    • /
    • 2010
  • Hydroforming has attracted a great deal of attention in the manufacturing industries for vehicles and transportation systems. Hydroforming technology contributes to weight reduction, increased strength, improved quality and reduced tooling cost. Hydroformed automotive parts used as structure components in vehichle body frame often have to be structurally joined at some point. Therefore it is useful if the hydroformed automotive parts can be given a localized attachment flange. For a given flange shape, a parting plane for the dies is established relative to which the various surfaces of the flange shape, in cross section, have no significant reverse curvature. In this study, hydroforming process for flange forming was proposed. FE analysis to form flanged circular shape and flanged rectangular shape was preformed with Dynaform 5.5. To accomplish successful hydroforming process design, thorough investigation on proper combination of process parameters such as tool geometry and hydraulic pressure has been performed and optimized. The results show that flanged automotive parts can be successfully produced with tube hydroforming.

Numerical Algorithms of Image Registration for Intra-Cavity Surgical Robots (인체 공동 내부 수술용 로봇을 위한 이미지기반 레지스트레이션 알고리즘)

  • Lee, Sang-Yoon;Shin, Seung-Ha;An, Jae-Bum;Joo, Jin-Man
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.714-719
    • /
    • 2004
  • This paper presents two numerical algorithms for registration of cross-sectional medical images such as CT (Computerized Tomography) or MRI (Magnetic Resonance Imaging) by using geometrical information from helix or line fiducials. The registration algorithms are designed to be used for a surgical robot working inside cavities of human body. A cylindrical device with a combination of line and helix fiducials were also devised and is supposed to be attached to the end-effector of surgical robot. The algorithms and the fiducial pattern were tested in various computer-simulated situations, and the results indicate excellent overall registration accuracy.

  • PDF

Vibration Analysis of Composite Cylindrical Shells Subjected to Electromagnetic and Thermal Fields (자기장 및 열하중을 받는 복합재료 원통셸의 진동해석)

  • Park, Sang-Yun;Kim, Sung-Kyun;Choi, Jong-Woon;Song, Oh-Seop
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.22 no.8
    • /
    • pp.791-799
    • /
    • 2012
  • In this paper free vibration analysis of symmetric and cross-ply elastic laminated shells based on FSDT was performed through discretization of equations of motion and boundary condition. Structural model of laminated composite cylindrical shells subjected to a combination of magnetic and thermal fields is developed via Hamilton's variational principle. These coupled equations of motion are based on the electromagnetic equations(Faraday, Ampere, Ohm, and Lorenz equations) and thermal equations which are involved in constitutive equations. Variations of dynamic characteristics of composite shells with applied magnetic field, temperature gradient, and stacking sequence are investigated and pertinent conclusions are derived.

Adaptive Regression by Mixing for Fixed Design

  • Oh, Jong-Chul;Lu, Yun;Yang, Yuhong
    • Communications for Statistical Applications and Methods
    • /
    • v.12 no.3
    • /
    • pp.713-727
    • /
    • 2005
  • Among different regression approaches, nonparametric procedures perform well under different conditions. In practice it is very hard to identify which is the best procedure for the data at hand, thus model combination is of practical importance. In this paper, we focus on one dimensional regression with fixed design. Polynomial regression, local regression, and smoothing spline are considered. The data are split into two parts, one part is used for estimation and the other part is used for prediction. Prediction performances are used to assign weights to different regression procedures. Simulation results show that the combined estimator performs better or similarly compared with the estimator chosen by cross validation. The combined estimator generates a similar risk to the best candidate procedure for the data.