• Title/Summary/Keyword: cross beam

Search Result 1,233, Processing Time 0.026 seconds

A STUDY ON INDUSTRIAL GAMMA RAY CT WITH A SINGLE SOURCE-DETECTOR PAIR

  • Kim Jong-Bum;Jung Sung-Hee;Kim Jin-Sup
    • Nuclear Engineering and Technology
    • /
    • v.38 no.4
    • /
    • pp.383-390
    • /
    • 2006
  • Having its roots in medical applications, industrial gamma ray CT has opened up new roads far investigating and modeling industrial processes. Using a line of research related to industrial gamma ray CT, the authors set up a system of single source and detector gamma transmission tomography for wood timber and a packed bed phantom. The hardware of the CT system consists of two servo motors, a data logger, a computer, a radiation source and a radiation detector. One motor simultaneously moves the source and the detector for a parallel beam scanning, whereas the other motor rotates the scan table at a preset projection angle. The image is reconstructed from the measured projections by the filtered back projection method. The phantom was designed to simulate a cross section of a packed bed with a void. The radiation source was 20mCi of Cs-137 and the detector was a 1 inch $\times$ 1 inch NaI (TI) scintillator shielded by a lead collimator. The experimental gamma ray CT image has sufficient resolution to reveal air holes and the density distribution inside the phantom. The system could possibly be applied to a packed bed column or a pipe flow in a petrochemical plant.

Measurement of Lateral Prestress Force of UHPC Cross Beam using the Smart Tendon (스마트강연선을 이용한 UHPC 가로보의 횡방향 긴장력 계측)

  • Kim, Hyun-Woo;Kim, Jae-Min;Kim, Young-Jin;Kim, Young-Sang
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2011.04a
    • /
    • pp.178-181
    • /
    • 2011
  • 본 연구에서는 광섬유센서를 내장한 스마트강연선을 이용하여 초고성능콘트리트로 제작된 하이브리드 사장교 세그먼트의 횡방향 도입 긴장력을 계측하고 세그먼트 내부의 프리스트레스를 계측하여 즉시손실에 해당하는 정착장치 활동에 의한 손실과 마찰손실을 도로교설계기준(2005)의 설계 마찰손실과 비교하였다. 제작된 2개의 UHPC 사장교 세그먼트는 횡방향 길이 16.7m, 종방향 길이 1.75m, 높이 1.5m이며 각 시험체의 1/4, 1/2, 3/4지점에 긴장력을 계측하기 위해 3개의 FBG센서를 배치하였다. 긴장력은 유압잭을 이용하여 5개의 강연선에 동시에 순차적으로 도입되었으며, 단부에서 최대 도입 긴장력은 세그먼트 1은 734kN, 세그먼트 2는 639kN이었다. 도로교설계기준에 제시된 마찰계수의 중간값(파상마찰계수=0.00405, 곡률마찰계수=0.20)을 사용하여 FBG센서 위치에서 계산된 긴장력은 계측치와 5% 이내의 차이를 보였으며, 정착장치 활동에 의한 순간손실은 긴장단에서 최대 12.8%로 계측되었다. 이로부터 이 연구에서 제시하는 긴장력계측방법의 적용성을 입증할 수 있었으며, 향후 이 방법은 프리스트레스트 콘크리트 교량의 설계기준 마찰계수 개정을 위한 연구에 좋은 도구로 활용될 수 있을 것으로 기대된다.

  • PDF

Developments of Fire-Resistant Wooden Structural Components and Those Applications to Mid- to High-Rise Buildings in Japan

  • Hanai, Atsunari;Nakai, Masayoshi;Matsuzaki, Hiroyuki;Ohashi, Hirokazu
    • International Journal of High-Rise Buildings
    • /
    • v.9 no.3
    • /
    • pp.221-233
    • /
    • 2020
  • Based on past experiences of natural disasters and fires in Japan, it is stipulated by law that fire-resistant buildings larger than a certain size should be unique in the world. Recent interest in global environmental issues has led to the active introduction of wooden buildings also in Japan, and it is expected that wooden buildings will become larger and higher in size. This paper introduces the background of the development of fire-resistant laminated timber with a "Self-Charring-Stop layer", the contents of this development including other related developments, and the application of these technologies. In addition, towards the realization of much larger and higher buildings in the future, the current problems and issues to be solved are set and the necessity of the future technological development is described. Finally, a conceptual model of wooden high-rise building is proposed, which will be able to be constructed in 2025 by the further technological development.

Natural Frequency of Building Slabs Supported by Elastic Beams (탄성보에 의하여 지지된 복합재료 상판의 고유 진동수)

  • 김덕현;심도식
    • Computational Structural Engineering
    • /
    • v.11 no.1
    • /
    • pp.227-235
    • /
    • 1998
  • A method of calculating the natural frequency corresponding to the first mode of vibration of beams and tower structures, with irregular cross-sections and with arbitrary boundary conditions was developed and reported by D. H. Kim in 1974. This method has been developed for two-dimensional problems including the laminated composite plates and was proved to be very effective for the plates with arbitrary boundary conditions and irregular sections. In this paper, the result of application of this method to the building slabs with passive and active control devices is presented. Finite difference method is used to obtain the deflection influence surfaces needed for this vibration analysis in this paper. The influence of the modulus of the foundation on the natural frequency is thoroughly studied.

  • PDF

Characterizations of Thermal Compound Using CuO Particles Grown by Wet Oxidation Method (습식 산화법으로 성장된 산화구리입자를 이용한 방열 컴파운드 제조 및 특성 연구)

  • Lee, Dong Woo;Um, Chang Hyun;Chu, Jae Uk
    • Korean Journal of Materials Research
    • /
    • v.27 no.4
    • /
    • pp.221-228
    • /
    • 2017
  • Various morphologies of copper oxide (CuO) have been considered to be of both fundamental and practical importance in the field of electronic materials. In this study, using Cu ($0.1{\mu}m$ and $7{\mu}m$) particles, flake-type CuO particles were grown via a wet oxidation method for 5min and 60min at $75^{\circ}C$. Using the prepared CuO, AlN, and silicone base as reagents, thermal interface material (TIM) compounds were synthesized using a high speed paste mixer. The properties of the thermal compounds prepared using the CuO particles were observed by thermal conductivity and breakdown voltage measurement. Most importantly, the volume of thermal compounds created using CuO particles grown from $0.1{\mu}m$ Cu particles increased by 192.5 % and 125 % depending on the growth time. The composition of CuO was confirmed by X-ray diffraction (XRD) analysis; cross sections of the grown CuO particles were observed using focused ion beam (FIB), field emission scanning electron microscopy (FE-SEM), and energy dispersive analysis by X-ray (EDAX). In addition, the thermal compound dispersion of the Cu and Al elements were observed by X-ray elemental mapping.

Influence of Loading Sizes on Natural Frequency of Composite Laminates (복합적층판의 고유진동수에 대한 하중 크기의 영향)

  • Han, Bong-Koo;Suck, Ju-Won
    • Journal of the Korean Society for Advanced Composite Structures
    • /
    • v.2 no.3
    • /
    • pp.42-47
    • /
    • 2011
  • A method of calculating natural frequencies corresponding to the modes of vibration of beams and tower structures with irregular cross sections and arbitrary boundary conditions was developed. The result is compared with that of the beam theory. Finite difference method is used for this purpose. The influence of the $D_{22}$ stiffness on the natural frequency is rigorously investigated. In this paper, the relation between the applied loading sizes and the natural frequency of vibration of some structural elements is presented. The results of application of this method to steel bridge and reinforced concrete slab bridge by using specially orthotropic plate theory is presented.

Sensitivity Analysis for Flexural Behaviors of PSC Members (프리스트레스트 콘크리트 휨 부재의 민감도 해석)

  • Lee, Jon-Ja;Lee, Bong-Goo;Kim, Min-Joo;Lee, Yong-Hak
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.6 no.2
    • /
    • pp.183-194
    • /
    • 2002
  • A general procedure to evaluate the sensitivity of design variables to stresses and strains in PSC flexural members is proposed. To accomplish the purpose of this study, long-term losses including creep, shrinkage, and PS steel relaxation are formulated based on the equilibrium states of the deformed sectional geometry. Thereby, the formulation follows the basic steps which consider the fundamental formulas adopted by CEB-FIP, ACI, and KCI rather than the age adjusted effective modulus concept. Twenty-one design variable including the material and geometrical properties of concrete, nonprestressing steel and prestressing steel, and the geometry of the cross section are considered in the sensitivity analysis. The gradients of the stresses and strains needed for the sensitivity assessment are calculated in a closed format. The derived formulation is applied to the T-type section PSC beam with prestressing and nonprestressing steels for the sensitivity analysis. The analytically calculated sensitivity results are compared with those numerically calculated to ensure the validity of the proposed procedure.

A Study on the Framework Schema of Jusimpo-Style Buddhist Halls of Goryeo Period (고려시대 주심포 불전의 가구형식에 관한 연구)

  • Kang, Sun-Hye;Yoon, Chae-Shin
    • Journal of architectural history
    • /
    • v.25 no.6
    • /
    • pp.7-16
    • /
    • 2016
  • The purpose of this study is to find framework schema of early J usimpo-style Buddhist halls (Geungnakjeon Hall of Bongjeongsa Temple, Muryangsujeon Hall of Buseoksa Temple, and Daeungjeon Hall of Sudeoksa Temple). Though the halls are known as built in the late Goryeo Period, they show the influence of the architectural style of the early Unified Silla Period. To find the adopted modules and proportions of these halls, this study conceived a schematic diagram based on the whole frame structure taking reference from the Cai-Fen system in Yingzao Fashi. In these three halls, the heights of each cross-beam (Dori) are made up by the layers of member and member units. This study computes the values of Cai, Zhi, and Fen which can apply to both the section and the plan. The vertical section structure is determined by combining the standard member heights (Cai) and the standard unit heights (CaiZhi). The bays of columns are made by multiples of the standard member width (Fen).

THEORETICAL ANALYSIS FOR STUDYING THE FRETTING WEAR PROBLEM OF STEAM GENERATOR TUBES IN A NUCLEAR POWER PLANT

  • LEE CROON YEOL;CHAI YOUNG SUCK;BAE JOON WOO
    • Nuclear Engineering and Technology
    • /
    • v.37 no.2
    • /
    • pp.201-206
    • /
    • 2005
  • Fretting, which is a special type of wear, is defined as small amplitude relative motion along the contacting interface between two materials. The structural integrity of steam generators in nuclear power plants is very much dependent upon the fretting wear characteristics of Inconel 690 U-tubes. In this study, a finite element model that can simulate fretting wear on the secondary side of the steam generator was developed and used for a quantitative investigation of the fretting wear phenomenon. Finite element modeling of elastic contact wear problems was performed to demonstrate the feasibility of applying the finite element method to fretting wear problems. The elastic beam problem, with existing solutions, is treated as a numerical example. By introducing a control parameter s, which scaled up the wear constant and scaled down the cycle numbers, the algorithm was shown to greatly reduce the time required for the analysis. The work rate model was adopted in the wear model. In the three-dimensional finite element analysis, a quarterly symmetric model was used to simulate cross tubes contacting at right angles. The wear constant of Inconel 690 in the work rate model was taken as $K=26.7{\times}10^{-15}\;Pa^{-1}$ from experimental data obtained using a fretting wear test rig with a piezoelectric actuator. The analyses revealed donut-shaped wear along the contacting boundary, which is a typical feature of fretting wear.

Critical Loads of Tapered Beck's Columns with Clamped and Spring Supports (일단고정 타단스프링으로 지지된 변단면 Beck 기둥의 임계하중)

  • Kim Suk-Ki;Park Kwang-Kyou;Lee Byoung-Koo
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.19 no.1 s.71
    • /
    • pp.85-92
    • /
    • 2006
  • This paper investigates critical loads of the tapered Beck's columns with clamped and spring supports, subjected to a subtangential follower force. The linearly tapered columns with the solid rectangular cross-section is adopted as the column taper. The differential equation governing free vibrations of such Beck's columns is derived using the Bemoulli-Euler beam theory. Both divergence and flutter critical loads are calculated from the load-frequency curves which are obtained by solving the differential equation. The critical loads are presented as functions of various non-dimensional system parameters: the taper type, the subtangential parameter and the spring stiffness.