• Title/Summary/Keyword: cross -sectional image

Search Result 295, Processing Time 0.027 seconds

Effect of Variable Scanning Protocols on the Pre-implant Site Evaluation of the Mandible in Reformatted Computed Tomography (영상재구성 전산화 단층촬영에서 촬영조건의 변화가 하악골 술전 임플란트 부위 평가에 미치는 영향)

  • Kim Kee-Deog;Park Chang-Seo
    • Journal of Korean Academy of Oral and Maxillofacial Radiology
    • /
    • v.29 no.1
    • /
    • pp.21-32
    • /
    • 1999
  • Purpose: To evaluate the effect of variable scanning protocols of computed tomography for evaluation of pre-implant site of the mandible through the comparison of the reformatted cross-sectional images of helical CT scans obtained with various imaging parameters versus those of conventional CT scans. Materials and Methods: A dry mandible was imaged using conventional nonoverlapped CT scans with 1 mm slice thickness and helical CT scans with 1 mm slice thickness and pitches of 1.0, 1.5. 2.0, 2.5 and 3.0. All helical images were reconstructed at reconstruction interval of 1 mm. DentaScan reformatted images were obtained to allow standardized visualization of cross-sectional images of the mandible. The reformatted images were reviewed and measured separately by 4 dental radiologists. The image qualities of continuity of cortical outline. trabecular bone structure and visibility of the mandibular canal were evaluated and the distance between anatomic structures were measured by 4 dental radiologists. Results: On image qualities of continuity of cortical outline. trabecular bone structure and visibility of the mandibular canal and in horizontal measurement. there was no statistically significant difference among conventional and helical scans with pitches of 1.0. 1.5 and 2.0. In vertical measurement. there was no statistically significant difference among the conventional and all imaging parameters of helical CT scans with pitches of 1.0, 1.5, 2.0, 2.5 and 3.0. Conclusion: The images of helical CT scans with 1 mm slice thickness and pitches of 1.0, 1.5 and 2.0 are as good as those of conventional CT scans with 1 mm slice thickness for evaluation of predental implant site of the mandible. Considering the radiation dose and patient comfort, helical CT scans with 1 mm slice thickness and pitch of 2.0 is recommended for evaluation of pre-implant site of the mandible.

  • PDF

Effect of Craniocervical Flexion Exercise on Pain and Cross Sectional Area of Longus Colli Muscle in Workers with Chronic Neck Pain (두경부 굴곡 운동이 만성 경부통 근로자의 통증 및 경장근 단면적에 미치는 영향)

  • Chon, Seung-Chul;Chang, Ki-Yeon
    • Journal of the Ergonomics Society of Korea
    • /
    • v.29 no.6
    • /
    • pp.889-895
    • /
    • 2010
  • This study compared the effects of craniocervical flexion exercise with conservative cervical flexion exercise in workers with chronic neck pain. Subjects were randomly allocated to two groups: control (n=20) and experimental group (n=20), respectively. The conservative exercise for the control group consisted of cervical flexion exercise, whereas the experimental group performed a craniocervical flexion exercise. To compare the two groups, the visual analogue scale (VAS) for a pain, neck disability index (NDI) for a neck disability scale, and cross sectional area (CSA) of longus colli muscle using ultrasound image were assessed on pre-intervention, post-intervention, and 2 weeks follow-up. 2-way repeated ANOVA was used with Bonferroni post-hoc test. (1) There were significant main effects (within and between groups) (p<0.05) and interaction effect (p<0.05) in VAS. Post-hoc test revealed that there were significant differences in all pair-wise comparisons. (2) There were significant main effects (within and between groups) (p<0.05) and interaction effect (p<0.05) in NDI. Post-hoc test revealed that there were significant differences between pre-intervention and post-intervention, pre-intervention and 2 weeks follow-up. (3) There were significant main effects (within and between groups) (p<0.05) and interaction effect (p<0.05) in CSA of longus colli muscle. Post-hoc test revealed that there were significant differences in all pair-wise comparisons. The findings indicate that craniocervical flexion exercise are more effective for improving pain, neck disability, and CSA of longus colli muscle than cervical flexion exercise in workers with chronic neck pain.

3D Segmentation of a Diagnostic Object in Ultrasound Images Using LoG Operator (초음파 영상에서 LoG 연산자를 이용한 진단 객체의 3차원 분할)

  • 정말남;곽종인;김상현;김남철
    • Journal of Biomedical Engineering Research
    • /
    • v.24 no.4
    • /
    • pp.247-257
    • /
    • 2003
  • This paper proposes a three-dimensional (3D) segmentation algorithm for extracting a diagnostic object from ultrasound images by using a LoG operator In the proposed algorithm, 2D cutting planes are first obtained by the equiangular revolution of a cross sectional Plane on a reference axis for a 3D volume data. In each 2D ultrasound image. a region of interest (ROI) box that is included tightly in a diagnostic object of interest is set. Inside the ROI box, a LoG operator, where the value of $\sigma$ is adaptively selected by the distance between reference points and the variance of the 2D image, extracts edges in the 2D image. In Post processing. regions of the edge image are found out by region filling, small regions in the region filled image are removed. and the contour image of the object is obtained by morphological opening finally. a 3D volume of the diagnostic object is rendered from the set of contour images obtained by post-processing. Experimental results for a tumor and gall bladder volume data show that the proposed method yields on average two times reduction in error rate over Krivanek's method when the results obtained manually are used as a reference data.

Image-based characterization of internal erosion around pipe in earth dam

  • Dong-Ju Kim;Samuel OIamide Aregbesola;Jong-Sub Lee;Hunhee Cho;Yong-Hoon Byun
    • Computers and Concrete
    • /
    • v.33 no.5
    • /
    • pp.481-496
    • /
    • 2024
  • Internal erosion around pipes can lead to the failure of earth dams through various mechanisms. This study investigates the displacement patterns in earth dam models under three different failure modes due to internal erosion, using digital image correlation (DIC) methods. Three failure modes—erosion along a pipe (FM1), pipe leakage leading to soil erosion (FM2), and erosion in a pipe due to defects (FM3)—are analyzed using two- and three-dimensional image- processing techniques. The internal displacement of the cross-sectional area and the surface displacement of the downstream slope in the dam models are monitored using an image acquisition system. Physical model tests reveal that FM1 exhibits significant displacement on the upper surface of the downstream slope, FM2 shows focused displacement around the pipe defect, and FM3 demonstrates increased displacement on the upstream slope. The variations in internal and surface displacements with time depend on the segmented area and failure mode. Analyzing the relationships between internal and surface displacements using Pearson correlation coefficients reveals various displacement patterns for the segmented areas and failure modes. Therefore, the image-based characterization methods presented in this study may be useful for analyzing the displacement distribution and behavior of earth dams around pipes, and further, for understanding and predicting their failure mechanisms.

An Algorithm for 3-Dimensional Reconstruction of Clinical Ultrasonic Image (임상적 초음파 신호의 3차원 영상처리를 위한 알고리즘)

  • 진영민;우광방;유형식
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.38 no.8
    • /
    • pp.658-666
    • /
    • 1989
  • In this paper, an efficient algorithm for estimation volume and surface area and a reconstruction algorithm for 3-dimensional graphics are presented.In order to improve computing efficiency, the graph theory is utilized and the algorithm to obtain proper contour points is developed by considering several tolerances. Search for the contour points is limited by the change of curvature of cross sectional contour to provide efficiency in searching the minimum cost path. In computer simulation of these algorithms, the results show that, for the tolerance values of 1.001 and 1.002, the execution time reduced to 66%-80% and the error for the measured value is less than 3%. The reconstructed 3-dimensional images from the cross sections can be analyzed in many directions using the graphic scheme.

  • PDF

New Finger-vein Recognition Method Based on Image Quality Assessment

  • Nguyen, Dat Tien;Park, Young Ho;Shin, Kwang Yong;Park, Kang Ryoung
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.7 no.2
    • /
    • pp.347-365
    • /
    • 2013
  • The performance of finger-vein recognition methods is limited by camera optical defocusing, the light-scattering effect of skin, and individual variations in the skin depth, density, and thickness of vascular patterns. Consequently, all of these factors may affect the image quality, but few studies have conducted quality assessments of finger-vein images. Therefore, we developed a new finger-vein recognition method based on image quality assessment. This research is novel compared with previous methods in four respects. First, the vertical cross-sectional profiles are extracted to detect the approximate positions of vein regions in a given finger-vein image. Second, the accurate positions of the vein regions are detected by checking the depth of the vein's profile using various depth thresholds. Third, the quality of the finger-vein image is measured by using the number of detected vein points in relation to the depth thresholds, which allows individual variations of vein density to be considered for quality assessment. Fourth, by assessing the quality of input finger-vein images, inferior-quality images are not used for recognition, thereby enhancing the accuracy of finger-vein recognition. Experiments confirmed that the performance of finger-vein recognition systems that incorporated the proposed quality assessment method was superior to that of previous methods.

Anomaly Detection of Big Time Series Data Using Machine Learning (머신러닝 기법을 활용한 대용량 시계열 데이터 이상 시점탐지 방법론 : 발전기 부품신호 사례 중심)

  • Kwon, Sehyug
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.43 no.2
    • /
    • pp.33-38
    • /
    • 2020
  • Anomaly detection of Machine Learning such as PCA anomaly detection and CNN image classification has been focused on cross-sectional data. In this paper, two approaches has been suggested to apply ML techniques for identifying the failure time of big time series data. PCA anomaly detection to identify time rows as normal or abnormal was suggested by converting subjects identification problem to time domain. CNN image classification was suggested to identify the failure time by re-structuring of time series data, which computed the correlation matrix of one minute data and converted to tiff image format. Also, LASSO, one of feature selection methods, was applied to select the most affecting variables which could identify the failure status. For the empirical study, time series data was collected in seconds from a power generator of 214 components for 25 minutes including 20 minutes before the failure time. The failure time was predicted and detected 9 minutes 17 seconds before the failure time by PCA anomaly detection, but was not detected by the combination of LASSO and PCA because the target variable was binary variable which was assigned on the base of the failure time. CNN image classification with the train data of 10 normal status image and 5 failure status images detected just one minute before.

New insight into the mandibular nerve at the foramen ovale level for percutaneous radiofrequency thermocoagulation

  • Peng-Bo Zhu;Yeon-Dong Kim;Ha Yeong Jeong;Miyoung Yang;Hyung-Sun Won
    • The Korean Journal of Pain
    • /
    • v.36 no.4
    • /
    • pp.465-472
    • /
    • 2023
  • Background: Percutaneous radiofrequency thermocoagulation (RFTC) has been widely utilized in the management of trigeminal neuralgia. Despite using image guidance, accurate needle positioning into the target area still remains a critical element for achieving a successful outcome. This study was performed to precisely clarify the anatomical information required to ensure that the electrode tip is placed on the sensory component of the mandibular nerve (MN) at the foramen ovale (FO) level. Methods: The study used 50 hemi-half heads from 26 South Korean adult cadavers. Results: The cross-sectioned anterior and posterior divisions of the MN at the FO level could be distinguished based on an irregular boundary and color difference. The anterior division was clearly brighter than the posterior one. The anterior division of the MN at the FO level was located at the whole anterior (38.0%), anteromedial (6.0%), anterior center (8.0%), and anterolateral (22.0%) parts. The posterior division was often located at the whole posterior or posterolateral parts of the MN at the FO level. The anterior divisions covered the whole MN except for the medial half of the posterolateral part in the overwrapped images of the cross-sectional areas of the MN at the FO level. The cross-sectional areas of the anterior divisions were similar in males and females, whereas those of the posterior divisions were significantly larger in males (P = 0.004). Conclusions: The obtained anatomical information is expected to help physicians reduce unwanted side effects after percutaneous RFTC within the FO for the MN.

Medical Image Registration Methods for Intra-Cavity Surgical Robots (인체 공동 내부 수술용 로봇을 위한 이미지 레지스트레이션 방법)

  • An, Jae-Bum;Lee, Sang-Yoon
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.24 no.9
    • /
    • pp.140-147
    • /
    • 2007
  • As the use of robots in surgeries becomes more frequent, the registration of medical devices based on images becomes more important. This paper presents two numerical algorithms for the registration of cross-sectional medical images such as CT (Computerized Tomography) or MRI (Magnetic Resonance Imaging) by using the geometrical information from helix or line fiducials. Both registration algorithms are designed to be used for a surgical robot that works inside a cavity of human body. This paper also reports details about the fiducial pattern that includes four helices and one line. The algorithms and the fiducial pattern were tested in various computer-simulated situations, and the results showed excellent overall registration accuracy.

Numerical Algorithms of Image Registration for Intra-Cavity Surgical Robots (인체 공동 내부 수술용 로봇을 위한 이미지기반 레지스트레이션 알고리즘)

  • Lee, Sang-Yoon;Shin, Seung-Ha;An, Jae-Bum;Joo, Jin-Man
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.714-719
    • /
    • 2004
  • This paper presents two numerical algorithms for registration of cross-sectional medical images such as CT (Computerized Tomography) or MRI (Magnetic Resonance Imaging) by using geometrical information from helix or line fiducials. The registration algorithms are designed to be used for a surgical robot working inside cavities of human body. A cylindrical device with a combination of line and helix fiducials were also devised and is supposed to be attached to the end-effector of surgical robot. The algorithms and the fiducial pattern were tested in various computer-simulated situations, and the results indicate excellent overall registration accuracy.

  • PDF