• Title/Summary/Keyword: cropping type

Search Result 95, Processing Time 0.026 seconds

Biomass, Nitrogen, and Phosphorus Productivities of Green Manure by Barley and Hairy Vetch Mixtures (보리와 헤어리베치 혼파재배에 따른 녹비작물 수량과 질소와 인산의 생산성)

  • Lee, Cho-Rong;Kim, Pil-Joo;Oh, Yura;Park, Choong-Bae;Park, Kwang-Lai;Nam, Hong-Sik;Park, Gi-Chun
    • Korean Journal of Organic Agriculture
    • /
    • v.26 no.4
    • /
    • pp.719-729
    • /
    • 2018
  • Green manure crops can be efficient replacements of high nutrient materials such as livestock compost, organic fertilizers, etc. in organic farming. Grass-legume mixtures or mixed cropping of legumes with non-legumes can aid in abating the shortcomings of each plant type under monoculture (i.e. legumes have low biomass yields while grasses are poor at fixing nitrogen). This study was conducted to investigate the effects of barley (B) and hairy vetch (H) mixtures on green manure yield in nutrient accumulated organic upland soils of Korea. In one cropping season, single crops of barley and hairy vetch (Barley: 160 kg/ha, Hairy vetch: 90 kg/ha) as well as mixtures of both crops at different seeding rates (B66:H33, B33: H66) were grown and the obtained results are as shown below. The biomass yield and nutrient productivities were higher in barley-hairy vetch mixture. The biomass yield and total phosphorus content were higher for the mixed crops by 78~132% and 200% respectively than those of the hairy vetch monoculture. Total nitrogen content of the mixed crops was also higher than those of the barley monoculture by 43~44%. The biomass yield (5.60 Mg/ha) and nutrient contents (87.7 kg N/ha, 23 kg $P_2O_5/ha$) were highest in the case of B66:H33 seeding rate. Accordingly, this study concludes that the barley-hairy vetch mixtures cropped at B66:H33 seeding rate is efficient in increasing green manure productivity due to complementary effects observed and the highest biomass yield and nutrient contents.

Estimation of Carbon Emission and LCA (Life Cycle Assessment) from Pepper (Capsicum annuum L.) Production System (고추의 생산과정에서 발생하는 탄소배출량 산정 및 전과정평가)

  • So, Kyu-Ho;Park, Jung-Ah;Huh, Jin-Ho;Shim, Kyo-Moon;Ryu, Jong-Hee;Kim, Gun-Yeob;Jeong, Hyun-Cheol;Lee, Deog-Bae
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.43 no.6
    • /
    • pp.904-910
    • /
    • 2010
  • LCA (Life Cycle Assessment) carried out to estimate carbon footprint and to establish of LCI (Life Cycle Inventory) database of pepper production system. Pepper production system was categorized the field cropping (redpepper) and the greenhouse cropping (greenpepper) according to pepper cropping type. The results of collecting data for establishing LCI D/B showed that input of fertilizer for redpepper production was more than that for greenpepper production system. The value of fertilizer input was 2.55E+00 kg $kg^{-1}$ redpepper and 7.74E-01 kg $kg^{-1}$ greenpepper. Amount of pesticide input were 5.38E-03 kg $kg^{-1}$ redpepper and 2.98E-04 kg $kg^{-1}$ greenpepper. The value of field direct emission ($CO_2$, $CH_4$, $N_2O$) were 5.84E-01 kg $kg^{-1}$ redpepper and 2.81E+00 greenpepper, respectively. The result of LCI analysis focussed on the greenhouse gas (GHG), it was observed that the values of carbon footprint were 4.13E+00 kg $CO_2$-eq. $kg^{-1}$ for redpepper and 4.70E+00 kg $CO_2$-eq. $kg^{-1}$ for greenpepper; especially for 90% and 6% of $CO_2$ emission from fertilizer and pepper production, respectively. $N_2O$ was emitted from the process of N fertilizer production (76%) and pepper production (23%). The emission value of $CO_2$ from greenhouse production was more higher than it of field production system. The result of LCIA (Life Cycle Impact Assessment) was showed that characterization of values of GWP (Global Warming Potential) were 4.13E+00 kg $CO_2$-eq. $kg^{-1}$ for field production system and 4.70E+00 kg $CO_2$-eq. $kg^{-1}$ for greenhouse production system. It was observed that the process of fertilizer production might be contributed to approximately 52% for redpepper production system and 48% for greenpepper production system of GWP.

Profitability Analysis Based on Cropping System of the Land Use Changes in Paddy Field (논 타작물 재배 작부체계별 수익성 분석)

  • Yu, Chan-Ju;Um, Ji-Bum;Ko, Hyeon-Seok;Park, Sang-Youn
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.1
    • /
    • pp.216-222
    • /
    • 2020
  • A comparative analysis of farm incomes was performed from the new composition system of crops, such as feed crops, including soybeans, Italian ryegrass, soybean-potatoes, and soybean-barley planted in rice fields. Through this analysis, the suggested implications were derived, and the technological solutions were determined. The profitability of the composition of soybean-Italian ryegrass showed that the soybeans yield was 325kg/10a, and the sale price was ₩3,962/kg, leading to a gross revenue of ₩1,288,000/10a. The yield of Italian ryegrass was 1,584kg/10a with a sale price of ₩125/kg, showing a gross revenue of ₩198,000/10a. The net income of soybeans was ₩284,000/10a, which means a net income rate of 22.1%, whereas the net income of Italian ryegrass was -₩30,000/10a. The composition of soybeans-potatoes and soybeans-barley showed a gross revenue of ₩930,000/10a and ₩375,000/10a, respectively. The crop composition types have been developed for the Income Type, Production Type of Forage, Improvement Type of Food Self-Sufficiency, and Corresponding Type to Climate Change. On the other hand, regional types have not been developed sufficiently. In addition, various selections of alternative crops and the establishment of crop composition congruent to the specific regions should be developed systematically in terms of the production technology. Therefore, it is necessary to develop the technological establishment of the crop composition through continuous related studies with the mid-to-long term objectives of land utilization and grain self-sufficiency rates.

Mating Types of Phytophthora infestans Isolates and Their Responses to Metalaxyl and Dimethomorph in Korea (감자 역병균(Phytophthora infestans)의 교배형과 metalaxyl 및 dimethomorph에 대한 반응)

  • Kim, Jeom-Soon;Lee, Young-Gyu;Kwon, Min;Kim, Ju-Il;Jee, Samnyu;Park, Kyeong-Hun
    • Research in Plant Disease
    • /
    • v.20 no.1
    • /
    • pp.25-30
    • /
    • 2014
  • Phytophthora infestans was isolated from potato leaves collected from main potato producing areas in Korea during 2009-2011. In 2009, 99 isolates tested were all A1 mating type. Two of 64 isolates in 2010 and two of 78 isolates in 2011 were A2 mating type and they were found only in Miryang area. Among 99 isolates examined in 2009, 13.1% was resistant to metalaxyl, 3.1% was intermediate resistant and 83.8% was sensitive. In 2010, 19.4% of 62 isolates was resistant, 4.8% was intermediate and 75.8% was sensitive. Metalaxyl resistant, intermediate and sensitive isolates collected in 2011 were 23.1%, 9.0% and 67.9%, respectively. Metalaxyl resistant isolates increased mainly in winter cropping areas and seed potato producing areas where fungicides were sprayed more often. Frequencies of isolates showing minimum inhibition concentration of dimethomorph at $1.0-5.0{\mu}g/ml$ were 17.2% in 2009, 19.0% in 2010 and 15.4% in 2011. However, there was no evidence for occurrence of resistant isolate to dimethomorph because no isolate was able to grow at $5.0{\mu}g/ml$.

Towards Integrated Pest Management of Rice in Korea

  • Lee, Seung-Chan
    • Korean journal of applied entomology
    • /
    • v.31 no.3
    • /
    • pp.205-240
    • /
    • 1992
  • In reality, it is a green revolution of the entire agricultural matrix in Korea that integrated pest control plays an important role in the possible breakthrough in rice self-sufficiency. In paddy agroecosystem as man-modified environment, rice is newly established every year by transplantation under diverse water regimes which affect a microclimate. Standing water benefits rice by regulating the microclimate, but it favors the multiplication of certain pets through the amelioration of the microclimate. Further, the introduction of high yielding varieties with the changing of cultural practices results in changing occurrence pattern of certain pests. In general, japonica type varieties lack genes resistant to most of the important pests and insect-borne virus diseases, whereas indica type possesses more genes conferring varietal resistance. Thus, this differences among indica type, form the background of different approaches to pest management. The changes in rice cultivation such as double cropping, growing high-yielding varieties requiring heavy fertilization, earlier transplanting, intensvie-spacing transplanting, and intensive pesticide use as a consequence of the adoption of improves rice production technology, have intensified the pest problems rather than reduced them. The cultivation of resistant varieties are highly effective to the pest, their long term stability is threathened because of the development of new biotypes which can detroy these varieties. So far, three biotypes of N. lugens are reported in Korea. Since each resistant variety is expected to maintain several years the sequential release of another new variety with a different gene at intervals is practised as a gene rotation program. Another approach, breeding multilines that have more than two genes for resistance in a variety are successfully demonstrated. The average annual rice losses during the last 15 years of 1977-’91 are 9.3% due to insect pests without chemical control undertaken, wehreas there is a average 2.4% despite farmers’insecticide application at the same period. In other words, the average annual losses are prvented by 6.9% when chemical control is properly employed. However, the continuous use of a same group of insecticides is followed by the development of pest resistance. Resistant development of C. suppressalis, L. striatellus and N. cincticeps is observed to organophosphorous insecticides by the mid-1960s, and to carbamates by the early 1970s in various parts of the country. Thus, it is apparent that a scheduled chemical control for rice production systems becomes uneconomical and that a reduction in energy input without impairing the rice yield, is necessarily improved through the implementation of integrated pest management systems. Nationwide pest forecasting system conducted by the government organization is a unique network of investigation for purpose of making pest control timely in terms of economic thresholds. A wise plant protection is expected to establish pest management systems in appropriate integration of resistant varieties, biological agents, cultural practices and other measures in harmony with minimizing use of chemical applications as a last weapon relying on economic thresholds.

  • PDF

Effect of Planting Date and Substrate on the Growth and Flowering of Hydroponically-grown Carnation (정식시기와 배지의 종류가 양액재배 카네이션의 생장과 개화에 미치는 영향)

  • 강종구;이범선;정순주
    • Journal of Bio-Environment Control
    • /
    • v.7 no.2
    • /
    • pp.116-122
    • /
    • 1998
  • This study was conducted to investigate growth and flowering of hydroponically-grown carnation as affected by substrate and planting date, Three substrates, coir, perlite, and coir+perlite(1:1. v/v), and two planting dates. May 1 and September 1 were used. Plant height and stem diameter at harvesting time of cut flowers were greater for the September 1 planting than for the May 1 planting. The plants planted on May 1 produced flowers with weak stems and short stem lengths. In addition, flower weight and blossom width were gloater for the September 1 planting than for the Mar 1 planting. The planting date had no significant effect on the number of petals, The carnation planted on May 1 flowered 50 days earlier compared to those Planted on September 1. Plant height and number of petals were the greatest in the plot of coir substrate. The results indicated that for commercial production of cut carnations in a hydroponic system, planting on September 1 is better than May 1. In addition. the results confirm that coir is the superior substrate for the production of cut carnations in a hydroponic system compared to either Perlite or coir+perlite mixture.

  • PDF

Assessing Changes in Selected Soil Chemical Properties of Rice Paddy Fields in Gyeongbuk Province

  • Park, Sang-Jo;Park, Jun-Hong;Won, Jong-Gun;Seo, Dong-Hwan;Lee, Suk-Hee
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.50 no.3
    • /
    • pp.150-161
    • /
    • 2017
  • This study was conducted with the data of monitoring on soil chemical properties of rice paddy soils in Gyeongbuk Province. The selected soil chemical properties were analyzed every 4 year from 1999 to 2015. The soil pH measured in 2015 was higher than pH 6.0, which was 0.3-0.4 pH unit higher than data until 2007 survey year. The mean content of organic matter was greater than $24g\;kg^{-1}$ since 2003, but 35% of soil samples remained below the recommended level ($20-30g\;kg^{-1}$) in 2015. The mean concentration of available phosphate was maintained at $40mg\;kg^{-1}$ higher than the upper recommendation level ($80-120mg\;kg^{-1}$), and more than 40% of paddy soils tested were found to have less than the recommendation level during the survey period. The exchangeable K concentration ranged from 0.25 to $0.39cmol_c\;kg^{-1}$. Exchangeable Ca showed an average at the optimum range ($5.0-6.0cmol_c\;kg^{-1}$) during the monitoring period. Exchangeable Mg decreased linearly ($0.02cmol_c\;kg^{-1}\;year^{-1}$) from $1.55cmol_c\;kg^{-1}$ as of 1999 to below the lower level of the recommendation range ($1.5-2.0cmol_c\;kg^{-1}$). The amount of available $SiO_2$ was increased significantly from 2011 to over the recommendation level (${\geq}157mg\;kg^{-1}$). It was revealed that the soil chemical properties of rice paddy fields was influenced by topology, soil texture, type and region as result of principal component analysis or cluster analysis. Therefore, an assessment on chemical properties of rice paddy soils should be performed to consider various soil physical conditions and agronomic practices such as fertilization, cropping system, and so on. Because of the high variability of nutrient levels across Gyeongbuk Province, nutrient management based on soil fertility test is required by respective farm land unit.

Evaluation of JULES Land Surface Model Based on In-Situ Data of NIMS Flux Sites (국립기상과학원 플럭스 관측 자료 기반의 JULES 지면 모델 모의 성능 분석)

  • Kim, Hyeri;Hong, Je-Woo;Lim, Yoon-Jin;Hong, Jinkyu;Shin, Seung-Sook;Kim, Yun-Jae
    • Atmosphere
    • /
    • v.29 no.4
    • /
    • pp.355-365
    • /
    • 2019
  • Based on in-situ monitoring data produced by National Institute of Meteorological Sciences, we evaluated the performance of Joint UK Land Environment Simulator (JULES) on the surface energy balance for rice-paddy and cropland in Korea with the operational ancillary data used for Unified Model (UM) Local Data Assimilation and Prediction System (LDAPS) (CTL) and the high-resolution ancillary data from external sources (EXP). For these experiments, we employed the one-year (March 2015~February 2016) observations of eddy-covariance fluxes and soil moisture contents from a double-cropping rice-paddy in BoSeong and a cropland in AnDong. On the rice-paddy site the model performed better in the CTL experiment except for the sensible heat flux, and the latent heat flux was underestimated in both of experiments which can be inferred that the model represents flood-irrigated surface poorly. On the cropland site the model performance of the EXP experiment was worse than that of CTL experiment related to unrealistic surface type fractions. The pattern of the modeled soil moisture was similar to the observation but more variable in time. Our results shed a light on that 1) the improvement of land scheme for the flood-irrigated rice-paddy and 2) the construction of appropriate high-resolution ancillary data should be considered in the future research.

Analysis on Characteristics of Agricultural Heritage in GIAHS sites (세계중요농업유산(GIAHS) 등재지역 농업유산의 특성 분석)

  • Jeong, Myeong-Cheol;Mun, Hyo-Yun;Yoon, Soon-Duck;Kim, Sang-Bum
    • Journal of Korean Society of Rural Planning
    • /
    • v.22 no.4
    • /
    • pp.171-182
    • /
    • 2016
  • Since FAO introduced the Globally Important Agricultural Heritage Systems(GIAHS) in 2002, 36 sites of 15 countries so far have been listed on GIAHS. This study aims to find the important agricultural heritages of Korea and to prepare the methods for them to be selected as GIAHS. We have analyzed the proposals of the 36 GIAHS listed in order to study the characteristics of their components of the agricultural heritage which worked for being selected. To analyze the components of the agricultural heritage first, agricultural heritage was classified into 13 types and 42 components in light of GIAHS criteria. Then central themes were set to analyze the relevant contents in the proposals. They were, the type of GIAHS Site, significant agricultural landscape, the agriculture-forestry-fisheries-livestock linkage systems, the multi-layered, inter-cropping, circulation cultivation systems, the soil and water management systems, the conservation of agrobiological diversity and genetic resources, the history of the agricultural heritage, the succession of traditional farming techniques, the cultural diversity and so on. Most GIAHS are located in mountains, grasslands, rivers and coasts, desert than in plains, through which GIAHS assure us that it is the heritage of human challenge to overcome the harsh geographic environment and maintain a livelihood. In these sites the traditional farming techniques are carried on, such as mountain clearings, terraced rice paddies, and burn fields, and the unique irrigation systems and agricultural landscapes are well maintained, and the eco-friendly traditional farming techniques utilizing abundant forest resources and agriculture are well handed down. The origin or home of crop growing, a variety of genetic crop storage, the world's largest crop producer and preserving cultural diversity are also important factors for the selection.

Climate Change Impacts on Optimum Ripening Periods of Rice Plant and Its Counter-Measure in Rice Cultivation (기후변화에 따른 벼 적정 등숙기간의 변동과 대책)

  • Yun Seong-Ho;Lee Jeong-Taek
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2000.11a
    • /
    • pp.28-45
    • /
    • 2000
  • It was unusual crop weather for 1998 and 1999 compared with normal in Korea. The consecutive days of the optimum ripening period for rice plant that had daily mean temperature 21-23C for 40 days after heading, increased with long anomalies in 1998-99. The air temperature during ripening period was much higher than the optimum temperature and lower sunshine hour than normal in the local adaptability tests of newly developed rice lines during those years. In response of rice cultivation to warming and cloudy weather during crop season, the yield shall be decreased. Most scientists agree that the rate of heating is accelerating and temperature change could become increasingly disruptive. Weather patterns should also become more erratic. Agrometeorologists could be analyzed yearly variations of temperature, sunshine hour and rainfall pattern focused on transient agroclimate change for last a decade. Rice agronomists could be established taking advantage of real time agricultural meteorology information system for fertilization, irrigation, pest control and harvest. Also they could be analyzed the characteristics of flowering response of the recommended and newly bred rice cultivars for suitable cropping plan such as cultural patterns and sowing or transplanting date. Rice breeders should be deeply considered introducing the characteristics of basic vegetative type of flowering response like Tonsil rices as prospective rice cultivars corresponding to global warming because of the rices needed higher temperature at ripening stage than Japonica rices, photoperiod sensitive and thermo-sensitive ecotypes

  • PDF