• 제목/요약/키워드: critical velocity

검색결과 836건 처리시간 0.021초

Aerodynamic stability of stay cables incorporated with lamps: a case study

  • Li, S.Y.;Chen, Z.Q.;Dong, G.C.;Luo, J.H.
    • Wind and Structures
    • /
    • 제18권1호
    • /
    • pp.83-101
    • /
    • 2014
  • Lamps installed on stay cables of cable-stayed bridges may alter the configuration of circular cross section of the cables and therefore result in aerodynamically unstable cable vibrations. The background of this study is a preliminary design of lamp installation on the cable-stayed He-dong Bridge in Guangzhou, China. Force measurements and dynamic response measurements wind tunnel tests were carried out to validate the possibility of cable galloping vibrations. It is observed that galloping will occur and the critical wind velocity is far less than the design wind velocity at Guangzhou City stipulated in Chinese Code. Numerical simulations utilizing software ANSYS CFX were subsequently performed and almost the same results as the wind tunnel tests were obtained. Moreover, the pressure and velocity contours around cable-lamp model obtained from numerical simulations indicated that the upstream steel wire in the preliminary design is the key factor for the onset of the galloping vibrations. A modification for the preliminary design of lamp installation, which suggests to remove the two parallel steel wires, is proposed, and it effectiveness is validated in further wind tunnel tests.

$180^{\circ}$ 곡관덕트에 연결된 출구 영역에서 난류 진동유동의 유동특성 (Flow Characteristics of Turbulent Oscillatory Flows in the Exit Region Connected to $180^{\circ}$Curved Duct)

  • 김대욱;손현철;이행남;박길문
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제25권4호
    • /
    • pp.817-824
    • /
    • 2001
  • In the present study, flow characteristics of turbulent oscillatory flows in the exit region connected to the square-sectional $180^{\circ}$curved duct was investigated experimentally. The experimental study for air flows was conducted to measure velocity profiles, shear stress distributions by using the Laser Doppler Velocimetry(L.D.V) system with the data acquisition and processing system of Rotating Machinery Resolver(R.M.R) and PHASE software. The results obtained from the experimentation were summarized as follows : The critical Reynolds number for a change from transitional oscillatory flow to turbulent oscillatory flow was about 75,000 in the 90 region of dimensionless axial position (x/Dh) which was considered as a fully developed flow region. In the turbulent oscillatory flow, velocity profiles of the inflow period in the entrance region were gradually developed, but those of the outflow period were not changed nearly. Shear stress distributions of turbulent oscillatory flow was gradually increased as the flow proceeds to downstream.

  • PDF

이동질량과 등분포접선종동력이 외팔보의 동특성에 미치는 영향 (Influence of Moving Masses on Dynamic Behavior of Cantilever Pipe Subjected to Uniformly Distributed Tangential Follower Forces)

  • 윤한익;김봉균;손인수
    • 한국소음진동공학회논문집
    • /
    • 제13권6호
    • /
    • pp.430-437
    • /
    • 2003
  • A conveying fluid cantilever pipe subjected to a uniformly distributed tangential follower force and three moving masses upon it constitute this vibrational system. The influences of the velocities of moving masses, the distance between two moving masses, and the uniformly distributed tangential follower force have been studied on the dynamic behavior of a cantilever pipe system by numerical method. The uniformly distributed tangential follower force is considered within its critical value of a cantilever pipe without moving masses, and three constant velocities and three constant distances between two moving masses are also chosen. When the moving masses exist on pipe, as the velocity of the moving mass and the distributed tangential follower force Increases. the deflection of cantilever pipe conveying fluid is decreased, respectively Increasing of the velocity of fluid flow makes the amplitude of a cantilever pipe conveying fluid decrease. After the moving mass passed upon the pipe, the tip- displacement of a pipe is influenced by the coupling effect between interval and velocity of moving mass and the potential energy change of a cantilever pipe. Increasing of the moving mass make the frequency of the cantilever pipe conveying fluid decrease.

Wind tunnel study of wind structure at a mountainous bridge location

  • Yan, Lei;Guo, Zhen S.;Zhu, Le D.;Flay, Richard G.J.
    • Wind and Structures
    • /
    • 제23권3호
    • /
    • pp.191-209
    • /
    • 2016
  • Wind tunnel tests of a 1/2200-scale mountainous terrain model have been carried out to investigate local wind characteristics at a bridge location in southeast Tibet, China. Flows at five key locations on the bridge at deck level were measured for 26 directions. It was observed that wind characteristics (including mean wind velocity and overall turbulence intensity) vary significantly depending on the approaching wind direction and measurement position. The wind inclination angle measured in the study fluctuated between $-18^{\circ}$ and $+16^{\circ}$ and the ratio of mean wind velocity to reference wind velocity was small when the wind inclination angles were large, especially for positive wind inclination angles. The design standard wind speed and the minimum critical wind speed for flutter rely on the wind inclination angle and should be determined from the results of such tests. The variation of wind speed with wind inclination angles should be of the asymmetry step type. The turbulence characteristics of the wind were found to be similar to real atmospheric flows.

고해상 3차원 입자영상유속계 개발과 구 유동장 정밀해석 적용연구 (Development of High-Definition 3D-PTV and its Application to High-Precision Measurements of a Sphere Wake)

  • 황태규;도덕희
    • 설비공학논문집
    • /
    • 제17권12호
    • /
    • pp.1161-1168
    • /
    • 2005
  • A Multi-Sectional 3D-PTV algorithm was developed to reduce the calculation time of the conventional GA-3D-PTV. The hardware system of the constructed 3D-PTV system consists of two high-speed cameras ($1,024\times1,018$ pixels, 60 fps), a metal halogen lamp (400W) and a host computer. The sphere(D=30mm) is suspended in a circulating water channel $(300mm\times300mm\times1,200m)$ and Reynolds number is 1,130. About 5,000 instantaneous three-dimensional velocity vectors have been obtained by the constructed 3D-PTV system. Turbulent properties such as turbulent intensity, Reynolds stress and turbulent kinetic energy were obtained. An eigenvalue analysis was carried out using the obtained instantaneous 3D velocity vectors to get the topological relations of the asymptotically stable critical point. Two structured shells, inner shell and outer shell, were found in the sphere wake and their motions were clarified by the measured data.

동력경운기의 경사지견인 및 주행특성에 관한 연구 (II)-동력경운기-트레일러계의 욍골동 및 동횡전도한계 (Study on the Travel and Tractive Characteristics of The Two-Wheel Tractor on the General Slope Ground (II)-Dynamic Side-overturn of the Tiller-trailer System-)

  • 송현갑;정창주
    • Journal of Biosystems Engineering
    • /
    • 제3권1호
    • /
    • pp.1-19
    • /
    • 1978
  • Power tiller is a major unit of agricultural machinery being used on farms in Korea. About 180.000 units are introduced by 1977 and the demand for power tiller is continuously increasing as the farm mechanization progress. Major farming operations done by power tiller are the tillage, pumping, spraying, threshing, and hauling by exchanging the corresponding implements. In addition to their use on a relatively mild slope ground at present, it is also expected that many of power tillers could be operated on much inclined land to be developed by upland enlargement programmed. Therefore, research should be undertaken to solve many problems related to an effective untilization of power tillers on slope ground. The major objective of this study was to find out the travelling and tractive characteristics of power tillers being operated on general slope ground.In order to find out the critical travelling velocity and stability limit of slope ground for the side sliding and the dynamic side overturn of the tiller and tiller-trailer system, the mathematical model was developed based on a simplified physical model. The results analyzed through the model may be summarized as follows; (1) In case of no collision with an obstacle on ground, the equation of the dynamic side overturn developed was: $$\sum_n^{i=1}W_ia_s(cos\alpha cos\phi-{\frac {C_1V^2sin\phi}{gRcos\beta})-I_{AB}\frac {v^2}{Rr}}=0$$ In case of collision with an obstacle on ground, the equation was: $$\sum_n^{i=1}W_ia_s\{cos\alpha(1-sin\phi_1)-{\frac {C_1V^2sin\phi}{gRcos\beta}\}-\frac {1}{2}I_{TP} \( {\frac {2kV_2} {d_1+d_2}\)-I_{AB}{\frac{V^2}{Rr}} \( \frac {\pi}{2}-\frac {\pi}{180}\phi_2 \} = 0 $$ (2) As the angle of steering direction was increased, the critical travelling veloc\ulcornerities of side sliding and dynamic side overturn were decreased. (3) The critical travelling velocity was influenced by both the side slope angle .and the direct angle. In case of no collision with an obstacle, the critical velocity $V_c$ was 2.76-4.83m/sec at $\alpha=0^\circ$, $\beta=20^\circ$ ; and in case of collision with an obstacle, the critical velocity $V_{cc}$ was 1.39-1.5m/sec at $\alpha=0^\circ$, $\beta=20^\circ$ (4) In case of no collision with an obstacle, the dynamic side overturn was stimu\ulcornerlated by the carrying load but in case of collision with an obstacle, the danger of the dynamic side overturn was decreased by the carrying load. (5) When the system travels downward with the first set of high speed the limit {)f slope angle of side sliding was $\beta=5^\circ-10^\circ$ and when travels upward with the first set of high speed, the limit of angle of side sliding was $\beta=10^\circ-17.4^\circ$ (6) In case of running downward with the first set of high speed and collision with an obstacle, the limit of slope angle of the dynamic side overturn was = $12^\circ-17^\circ$ and in case of running upward with the first set of high speed and collision <>f upper wheels with an obstacle, the limit of slope angle of dynamic side overturn collision of upper wheels against an obstacle was $\beta=22^\circ-33^\circ$ at $\alpha=0^\circ -17.4^\circ$, respectively. (7) In case of running up and downward with the first set of high speed and no collision with an obstacle, the limit of slope angle of dynamic side overturn was $\beta=30^\circ-35^\circ$ (8) When the power tiller without implement attached travels up and down on the general slope ground with first set of high speed, the limit of slope angle of dynamic side overturn was $\beta=32^\circ-39^\circ$ in case of no collision with an obstacle, and $\beta=11^\circ-22^\circ$ in case of collision with an obstacle, respectively.

  • PDF

방풍벽에 의한 비산 먼지 저감 효과 (The Effects of Windbreaks on Reduction of Suspended Particles)

  • 송창근;김재진;송동웅
    • 대기
    • /
    • 제17권4호
    • /
    • pp.315-326
    • /
    • 2007
  • The effects of windbreaks on the reduction of suspended particles are investigated using a computational fluid dynamics (CFD) model with the ${\kappa}-{\varepsilon}$ turbulence closure scheme based on the renormalization group (RNG) theory. In the control experiment, the recirculation zones behind the storage piles are generated and, as a whole, relatively monotonous flow patterns appear. When the windbreaks with the 0% porosity are constructed, the recirculation zones are generated by the windbreaks and very complicated flow patterns appear due to the interference between the windbreaks and storage piles. The porosity of the windbreaks suppresses the generation of the recirculation zone and decreases the wind velocity in the windbreaks as well as that outside the windbreaks. As the emission of suspended particles from the storage piles are closely related with the friction velocity at the surfaces of the storage piles, variation of the friction velocity and total amount of the emission of the suspended particles with the height and porosity of the windbreaks are investigated. The results show that higher and more porous windbreaks emit less suspended particles and that the reduction effect of the porosity is still more effective than that of the height. In the case of the windbreak with 30 m height and 50% porosity, friction velocities above the storage piles are smaller than the critical friction velocity above which particles would be suspended. As a result, total amount of suspended particles are much fewer than those in other cases.

황해남부의 역풍류에 대한 단순 이론 모델 (A Simple Theoretical Model for the Upwind Flow in the Southern Yellow Sea)

  • 박용향
    • 한국해양학회지
    • /
    • 제21권4호
    • /
    • pp.203-210
    • /
    • 1986
  • 선형, 평행 수송모델을 세우고 이상적인 항해에 적용하였다. 이 간단한 해석 모델로서 지금 까지 예지되어 온 황해 남부의 역풍류 현상을 적절히 설명할 수 있 다. 수심이 임계수심(본모델 바다에서는 Hc=53m임)보다 깊은 해역에서는 압력 경도 력이 바람응력보다 우세하여 역풍류를 야기시킨다. 추정된 역풍류 속도는 풍속과 함께 증가하며 최대 역풍류는 황해의 깊은 골을 따라나타난다. 하계의 전형적인 남 풍속도 5-10노트에 대해서 황해골을 따른 역풍류(남향류)속도는 1-5cm s$^{-1}$로 추정된다. 반면에 동계의 전형적인 북풍속도 10-15노트에 대해서는 역풍류(북향류) 속도는 5-12cm s$^{-1}$ 이다. 이와 같은 속도 범위는 각각 하계의 황해 저층냉수 와 동계의 황해난류의 잠입속도에 대한 개략적인 추정치로서 사용될 수 있다.

  • PDF

개의 만성 이첨판 폐쇄부전증 환자군에서 혈장 NT-proBNP 농도 평가연구 (Evaluation of Plasma NT-proBNP Concentration in Dogs with Chronic Mitral Valve Insufficiency)

  • 이승곤;현창백
    • 한국임상수의학회지
    • /
    • 제30권3호
    • /
    • pp.151-158
    • /
    • 2013
  • 본 연구는 개의 이첨판 폐쇄부전증(CMVI) 환자군에서 혈장 NT-proBNP농도를 평가한 연구이다. 본 연구를 위해 CMVI에 이환된 50마리와 건강한 대조군 7마리를 대상으로 일반적인 심초음파 검사와 혈중NT-proBNP농도를 측정하였다. 심부전의 심하기에 따라 분류된 환자군에서 측정된 NT-proBNP농도와 심초음파 인덱스의 상호관련성을 평가하였다. 혈중 NT-proBNP 농도는 심부전의 심하기에 따라 상승하였다. 또한 심초음파 인덱스중 left atrium/aorta (LA/AO), early diastolic transmitral flow (E) velocity, late diastolic transmitral flow (A) velocity, end diastolic volume index (EDVI) 등과 밀접한 관련성이 관찰되었다. 본 연구는 이첨판 폐쇄부전증 환자의 예후를 평가하는데 중요할 것으로 보인다.

LEEFI형 착화장치의 설계 신뢰도 추정 (Design Reliability Estimation of Low Energy Exploding Foil Initiator)

  • 이민우;백승준;손영갑;장승교
    • 한국추진공학회지
    • /
    • 제22권5호
    • /
    • pp.40-48
    • /
    • 2018
  • 본 논문은 시뮬레이션 기반으로 메타 모델을 이용하여 LEEFI형 착화장치의 설계 신뢰도를 추정하는 방법과 설계 신뢰도를 추정한 결과를 나타내었다. LEEFI형 착화장치에서 비행편 속도는 화약 기폭에 중대한 영향을 미친다. 복잡한 물리적 현상으로 비행편의 속도가 발생하기 때문에 문헌에 공개된 역학적 모델을 이용하여 비행편 속도를 평가하는 데 많은 연산 시간이 필요하다. 또한 높은 신뢰도를 가지는 착화기는 요구되는 신뢰수준이 증가할수록 신뢰도 평가에 연산 비용이 증가한다. 따라서 설계 신뢰도 추정시 연산 효율성을 증가시키기 위하여 시간에 따른 비행편 속도에 대한 메타모델을 구축하였다. 구축한 메타모델을 이용하여 설계 변수의 다양한 분포 및 시그마 수준에 따른 설계 신뢰도를 추정한 결과를 나타내었다. 그리고 제안하는 추정 방법에 대한 연산 효율성과 정확성을 분석하였다.