• Title/Summary/Keyword: critical velocity

Search Result 831, Processing Time 0.027 seconds

Scale Effect on the Flow-Induced Vibration of Carbon Nanotubes Conveying Fluids (Scale effect를 고려한 탄소나노튜브의 유체유발진동)

  • Choi, Jong-Woon;Kim, Sung-Kyun;Park, Sang-Yun;Kim, Young-June;Song, Oh-Seop
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2011.10a
    • /
    • pp.147-152
    • /
    • 2011
  • In this paper, static and oscillatory loss of stability of carbon nanotube conveying fluid and modelled as a thin-walled beam is investigated. Analytically nonlocal effect, transverse shear and rotary inertia are incorporated in this study. The governing equations and the boundary conditions are derived through Hamilton's principle. Numerical analysis is performed by using extend Galerkin method which enables us to obtain more exact solutions compared with conventional Galerkin method. Variations of critical flow velocity for analytically nonlocal effect, partially nonlocal effect and local effect of carbon nanopipes are investigated and pertinent conclusion is outlined.

  • PDF

Fracture and Wear Characteristics of Al-Si alloy used for Compressor (컴프레서용 Al-Si 합금의 파괴 및 마모 특성)

  • 김재훈;김덕회
    • Tribology and Lubricants
    • /
    • v.15 no.2
    • /
    • pp.141-149
    • /
    • 1999
  • Fracture, fatigue and wear characteristics of Al-Si alloy used for compressor are experimentally studied. Plane strain fracture toughness test is carried out using three point bending specimen. Fatigue test is performed under constant loading condition and wear test is carried out as a function of sliding velocity and applied load. To obtain the crack propagation characteristics and wear mechanism of Al-Si alloy, fracture and worn surfaces are investigated using SEM. It is verified that fracture and fatigue strength of Al-Si alloy are improved by the fine microstructure of alloy. The wear behavior and specific wear amount of Al-Si alloy are not dependent on the microstructure but on a function of the silicon content. Anodizing on the surface of Al-Si alloy, surface hardness and wear characteristics are improved.

Sensitivity Analysis of Parameters in a Depth Averaged Two-Dimensional Sediment Transport Model (수심적분 2차원 유사이동모형에 관계된 인자들의 민감도분석에 관한 연구)

  • Seo, Sang-Won;Yun, Byeong-Man
    • Journal of Korea Water Resources Association
    • /
    • v.31 no.1
    • /
    • pp.115-120
    • /
    • 1998
  • In this paper, a depth-averaged two-dimensional transport model is introduced, and its error bound is presented as the results of sensitivity analysis. The results show that the calculated SS concentration is highly dependant on Manning roughness coefficient, mixing coefficient. fall velocity. and critical shear stress. On the other hand, water level and dispersion coefficient are proved to be less significant in the variation of SS concentration.

  • PDF

Hydraulic Model Test and Numerical Analysis of Grass Concrete in River Environment (자연형 호안공법의 그라스콘의 수리모형실험 및 수치해석 연구)

  • Jang, Suk-Hwan;Park, Sung-Bum;Park, Sang-Woo
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2007.05a
    • /
    • pp.1244-1248
    • /
    • 2007
  • This study aims at investigating the in situ applying grass concrete system in river environments which widely used nowadays and reviewing the effect and flow resistance for grass concrete structure through the physical experiments by hydraulic model test and developing application method in river bed which has rigid flood resistance. Grass concrete structure has been independently tested under high velocity flow under the super critical condition, as well as sud critical flow measuring velocity and water surface elevation along the cross section. This results shows grass concrete system is also suited to use in aggressive river environments such as repairing a flood damaged embankment that had placed at risk the adjacent drainage channel with vegetation.

  • PDF

The Computer Simulation on the Characteristics of the Non-Inductive Superconducting Fault Current Limiter (무유도성 초전도전류제한기의 특성 해석 및 컴퓨터 시뮬레이션)

  • 주민석;이상진;오윤상;고태국
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.43 no.7
    • /
    • pp.1050-1060
    • /
    • 1994
  • This paper is a study on the computer simulation of the characteristics of the superconducting fault current limiter. Input variable parameters are apparent power, load resistance value, line resistance value and so on. Initial fault current 2 times larger than the trigger current is required to reduce the switching time of SFCL. The propagation velocity increases abruptly, the transport current is several times larger than the ciritical current. In this paper, the switching time is calculated to be 323$\mu$ sec, and the initial fault current is 19 times larger than the critical current. Because the trigger coils are bifilar winding, they have little impedance in superconducting state. After fault occurred, the limiting coil acts as a superconducting reactor and the trigger coils quench at a critical current. Without the SFCL in the circuit, fault current after the load impedence is shorted might be increased to 1100A. The fault current is, therefore, successfully limited by the superconducting limiting coil to 100A determined by the coil inductance.

  • PDF

Application of inverse reliability method to estimation of flutter safety factors of suspension bridges

  • Cheng, Jin;Dong, Fenghui
    • Wind and Structures
    • /
    • v.24 no.3
    • /
    • pp.249-265
    • /
    • 2017
  • An efficient and accurate algorithm is proposed to estimate flutter safety factor of suspension bridges satisfying prescribed reliability levels. Uncertainties which arise from the basic wind speed at the bridge deck location, critical flutter velocity, the wind conversion factor from a scaled model to the prototype structure and the gust speed factor are incorporated. The proposed algorithm integrates the concepts of the inverse reliability method and the calculation method of the critical flutter velocity of suspension bridges. The unique feature of the proposed method is that it offers a tool for flutter safety assessment of suspension bridges, when the reliability level is specified as a target to be satisfied by the designer. Accuracy and efficiency of this method with reference to three example suspension bridges is studied and numerical results validate its superiority over conventional deterministic method. Finally, the effects of various parameters on the flutter safety factor of suspension bridges are also investigated.

Frequency and critical fluid velocity analysis of pipes reinforced with FG-CNTs conveying internal flows

  • Ghaitani, M.;Majidian, A.
    • Wind and Structures
    • /
    • v.24 no.3
    • /
    • pp.267-285
    • /
    • 2017
  • This paper addresses vibration and instability of embedded functionally graded (FG)-carbon nanotubes (CNTs)-reinforced pipes conveying viscous fluid. The surrounding elastic medium is modeled by temperature-dependent orthotropic Pasternak medium. Flugge shell model is applied for mathematical modeling of structure. Based on energy method and Hamilton's principal, the motion equations are derived. Differential quadrature method (GDQM) is applied for obtaining the frequency and critical fluid velocity of system. The effects of different parameters such as volume percent of CNTs, elastic medium, boundary condition and geometrical parameters are discussed.

Ship's Maneuverability in Strong Wind

  • Im, Nam-Kyun;Tran, Van-Luong
    • Journal of Navigation and Port Research
    • /
    • v.32 no.2
    • /
    • pp.115-120
    • /
    • 2008
  • This paper deals with effect of wind forces and moment acting on the training ship SAE NURI. The results of drift angle and counter rudder angle due to wind effect are calculated by using the static equilibrium method especially with nonlinear mathematical expression, and then the critical wind velocity is found out. The given results can be applied directly to T/S SAE NURI in handling under the wind condition and used for merchant ships as a referential tool.

Dynamic testing of a soil-steel bridge

  • Beben, Damian;Manko, Zbigniew
    • Structural Engineering and Mechanics
    • /
    • v.35 no.3
    • /
    • pp.301-314
    • /
    • 2010
  • The paper presents the results and conclusions of dynamic load tests that were conducted on a road bridge over the Mokrzyca river in Wroclaw (Poland) made of galvanized corrugated steel plates (CSP). The critical speed magnitudes, velocity vibration, vibration frequency were determined in the paper. The dynamic analysis is extremely important, because such studies of soil-steel bridges in the range of dynamic loads are relatively seldom conducted. Conclusions drawn from the tests can be most helpful in the assessment of behaviour of this type of corrugated plate bridge with soil. In consideration of application of this type of structure in the case of small-to-medium span bridges, the conclusions from the research will not be yet generalized to all types of such solutions. The detailed reference to all type of such bridge structures would be requiring additional analysis (field tests and calculations) on the other types of soil-steel bridges.

A Study on Hovering Performance of Personal Air Vehicle According to Distance between Rotor Blade Axis via Computational Fluid Dynamics (전산유체역학을 통한 PAV의 로터 블레이드 축간거리에 따른 호버링 성능 변화 연구)

  • Yoon, Jaehyun;Noh, Wooseung;Doh, Jaehyeok
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.21 no.5
    • /
    • pp.53-60
    • /
    • 2022
  • In this study, the conceptual design and performance evaluation of a personal air vehicle (PAV) is presented, which is a potential futuristic individual transportation. The blade element theory (BET) is employed to compute a rotational velocity. A computational fluid dynamics (CFD) simulation is performed to investigate the difference in the thrust performance in the rotor axis distance of a quad-copter PAV in hovering. Modal analysis is performed to create a Campbell diagram to investigate critical speed. Consequently, a quad-copter PAV changes the aerodynamics thrust and critical velocity according to the rotor axis distance.