• Title/Summary/Keyword: critical speed

Search Result 1,492, Processing Time 0.026 seconds

Determination of Key Factors for the Pedestrian LOS Introducing the Accessibility Index (접근성 지표를 도입한 보행로 서비스 수준의 영향요인 규명)

  • CHOI, Sung Taek;CHOO, Sang Ho;JANG, Jin Young
    • Journal of Korean Society of Transportation
    • /
    • v.33 no.6
    • /
    • pp.584-597
    • /
    • 2015
  • A considerable amount of literature has been published on pedestrian LOS. So far, however, there is a limitation that LOS analysis methodologies has concentrated on quantitative variables such as pedestrian flow rate, speed and space. This paper intended to suggest the accessibility variable which can not be considered on previous study. The factor was defined and quantified using public transport attributes in particular. This study was carried out in three phases: 1. defined accessibility employing public mode location and service information. 2. investigated the relationship between accessibility and pedestrian flow rate 3. developed the model to establish the factors affected to pedestrian LOS. The results showed that accessibility, walkway attribute and land use type affected the pedestrian LOS. Especially, accessibility and commercial area ratio had negative relationship with LOS. Futhermore, pedestrian LOS declined when obstacle of bus station located on the walkway. On the contrary, LOS was upgraded when sufficient effective width or residential area was secured. These results can receive considerable critical attentions related to determination of pedestrian LOS or effective walkway width.

An Investigation of the Selection Process of Mathematically Gifted Students

  • Lee, Kyung-Hwa;Park, Kyung-Mee;Yim, Jae-Hoon
    • Research in Mathematical Education
    • /
    • v.7 no.3
    • /
    • pp.139-150
    • /
    • 2003
  • The purpose of this paper is to review the gifted education from a reflective perspective. Especially, this research touches upon the issues of selection process from a critical point of view. Most of the problems presented in the mathematics competition or in the programs for preparing such competitions share the similar characteristic: the circumstances that are given for questions are too artificial and complicated; problem solving processes are superficially and fragmentally related to mathematical knowledge; and the previous experience with the problem very much decides whether a student can solve the problem and the speed of problem solving. In contrast, the problems for selecting students for Gifted Education Center clearly show what the related mathematical knowledge is and what kind of mathematical thinking ability these problems intend to assess. Accordingly, the process of solving these problems can be considered an important criterion of a student's mathematical ability. In addition, these kinds of problems can encourage students to keep further interest, and can be used as tasks for mathematical investigation later. We hope that this paper will initiate further discussions on issues derived from the mathematically gifted student selection process.

  • PDF

Analysis of S/W Test Coverage Automated Tool & Standard in Railway System (철도시스템 소프트웨어 테스트 커버리지 자동화 도구 및 기준 분석)

  • Jo, Hyun-Jeong;Hwang, Jong-Gyu;Shin, Seung-Kwon;Oh, Suk-Mun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.11
    • /
    • pp.4460-4467
    • /
    • 2010
  • Recent advances in computer technology have brought more dependence on software to railway systems and changed to computer systems. Hence, the reliability and safety assurance of the vital software running on the embedded railway system is going to tend toward very critical task. Accordingly, various software test and validation activities are highly recommended in the international standards related railway software. In this paper, we presented an automated analysis tool and standard for software testing coverage in railway system, and presented its result of implementation. We developed the control flow analysis tool estimating test coverage as an important quantitative item for software safety verification in railway software. Also, we proposed judgement standards due to railway S/W Safety Integrity Level(SWSIL) based on analysis of standards in any other field for utilizing developed tool widely at real railway industrial sites. This tool has more advantage of effective measuring various test coverages than other countries, so we can expect railway S/W development and testing technology of real railway industrial sites in Korea.

The Improvement of Point Cloud Data Processing Program For Efficient Earthwork BIM Design (토공 BIM 설계 효율화를 위한 포인트 클라우드 데이터 처리 프로그램 개선에 관한 연구)

  • Kim, Heeyeon;Kim, Jeonghwan;Seo, Jongwon;Shim, Ho
    • Korean Journal of Construction Engineering and Management
    • /
    • v.21 no.5
    • /
    • pp.55-63
    • /
    • 2020
  • Earthwork automation has emerged as a promising technology in the construction industry, and the application of earthwork automation technology is starting from the acquisition and processing of point cloud data of the site. Point cloud data has more than a million data due to vast extent of the construction site, and the processing time of the original point cloud data is critical because it takes tens or hundreds of hours to generate a Digital Terrain Model (DTM), and enhancement of the processing time can largely impact on the efficiency of the modeling. Currently, a benchmark program (BP) is actively used for the purpose of both point cloud data processing and BIM design as an integrated program in Korea, however, there are some aspects to be modified and refined. This study modified the BP, and developed an updated program by adopting a compile-based development environment, newly designed UI/UX, and OpenGL while maintaining existing PCD processing functions, and expended compatibility of the PCD file formats. We conducted a comparative test in terms of loading speed with different number of point cloud data, and the results showed that 92 to 99% performance increase was found in the developed program. This program can be used as a foundation for the development of a program that reduces the gap between design and construction by integrating PCD and earthwork BIM functions in the future.

Wall Cuckoo: A Method for Reducing Memory Access Using Hash Function Categorization (월 쿠쿠: 해시 함수 분류를 이용한 메모리 접근 감소 방법)

  • Moon, Seong-kwang;Min, Dae-hong;Jang, Rhong-ho;Jung, Chang-hun;NYang, Dae-hun;Lee, Kyung-hee
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.8 no.6
    • /
    • pp.127-138
    • /
    • 2019
  • The data response speed is a critical issue of cloud services because it directly related to the user experience. As such, the in-memory database is widely adopted in many cloud-based applications for achieving fast data response. However, the current implementation of the in-memory database is mostly based on the linked list-based hash table which cannot guarantee the constant data response time. Thus, cuckoo hashing was introduced as an alternative solution, however, there is a disadvantage that only half of the allocated memory can be used for storing data. Subsequently, bucketized cuckoo hashing (BCH) improved the performance of cuckoo hashing in terms of memory efficiency but still cannot overcome the limitation that the insert overhead. In this paper, we propose a data management solution called Wall Cuckoo which aims to improve not only the insert performance but also lookup performance of BCH. The key idea of Wall Cuckoo is that separates the data among a bucket according to the different hash function be used. By doing so, the searching range among the bucket is narrowed down, thereby the amount of slot accesses required for the data lookup can be reduced. At the same time, the insert performance will be improved because the insert is following up the operation of the lookup. According to analysis, the expected value of slot access required for our Wall Cuckoo is less than that of BCH. We conducted experiments to show that Wall Cuckoo outperforms the BCH and Sorting Cuckoo in terms of the amount of slot access in lookup and insert operations and in different load factor (i.e., 10%-95%).

Rotordynamic Performance Measurements and Predictions of a FCEV Air Compressor Supported on Gas Foil Bearings (가스 포일 베어링으로 지지되는 연료전지 전기자동차용 공기압축기의 회전체동역학적 성능 측정 및 예측)

  • Hwang, Sung Ho;Moon, Chang Gook;Kim, Tae Ho;Lee, Jongsung;Cho, Kyung Seok;Ha, Kyoung-Ku;Lee, Chang Ha
    • Tribology and Lubricants
    • /
    • v.35 no.1
    • /
    • pp.44-51
    • /
    • 2019
  • The paper presents the rotordynamic performance measurements and model predictions of a fuel cell electric vehicle (FCEV) air compressor supported on gas foil bearings (GFBs). The rotor has an impeller on one end and a thrust runner on the other end. The front (impeller side) and rear (thrust side) gas foil journal bearings (GFJBs) are located between the impeller and thrust runner to support the radial loads, and a pair of gas foil thrust bearings are located on both sides of the thrust runner to support the axial loads. The test GFJBs have a partial arc shim foil installed between the top foil and bump strip layers to enhance hydrodynamic pressure generation. During the rotordynamic performance tests, two sets of orthogonally installed eddy-current displacement sensors measure the rotor radial motions at the rotor impeller and thrust ends. A series of speed-up and coast-down tests to 100k rpm demonstrates the dominant synchronous (1X) rotor responses to imbalance masses without noticeable subsynchronous motions, which indicates a rotordynamically stable rotor-GFB system. Finite element analysis of the rotor determines the rotor free-free (bending) natural modes and frequencies well beyond the maximum rotating frequency. The predicted damped natural frequencies and damping ratios of the rotor-GFB system reveal rotordynamic stability over the speeds of interest. The imbalance response predictions show that the predicted critical speeds and rotor amplitudes strongly agree with the test measurements, thus validating the developed rotordynamic model.

Wind load and wind-induced effect of the large wind turbine tower-blade system considering blade yaw and interference

  • Ke, S.T.;Wang, X.H.;Ge, Y.J.
    • Wind and Structures
    • /
    • v.28 no.2
    • /
    • pp.71-87
    • /
    • 2019
  • The yaw and interference effects of blades affect aerodynamic performance of large wind turbine system significantly, thus influencing wind-induced response and stability performance of the tower-blade system. In this study, the 5MW wind turbine which was developed by Nanjing University of Aeronautics and Astronautics (NUAA) was chosen as the research object. Large eddy simulation on flow field and aerodynamics of its wind turbine system with different yaw angles($0^{\circ}$, $5^{\circ}$, $10^{\circ}$, $20^{\circ}$, $30^{\circ}$ and $45^{\circ}$) under the most unfavorable blade position was carried out. Results were compared with codes and measurement results at home and abroad, which verified validity of large eddy simulation. On this basis, effects of yaw angle on average wind pressure, fluctuating wind pressure, lift coefficient, resistance coefficient,streaming and wake characteristics on different interference zone of tower of wind turbine were analyzed. Next, the blade-cabin-tower-foundation integrated coupling model of the large wind turbine was constructed based on finite element method. Dynamic characteristics, wind-induced response and stability performance of the wind turbine structural system under different yaw angle were analyzed systematically. Research results demonstrate that with the increase of yaw angle, the maximum negative pressure and extreme negative pressure of the significant interference zone of the tower present a V-shaped variation trend, whereas the layer resistance coefficient increases gradually. By contrast, the maximum negative pressure, extreme negative pressure and layer resistance coefficient of the non-interference zone remain basically same. Effects of streaming and wake weaken gradually. When the yaw angle increases to $45^{\circ}$, aerodynamic force of the tower is close with that when there's no blade yaw and interference. As the height of significant interference zone increases, layer resistance coefficient decreases firstly and then increases under different yaw angles. Maximum means and mean square error (MSE) of radial displacement under different yaw angles all occur at circumferential $0^{\circ}$ and $180^{\circ}$ of the tower. The maximum bending moment at tower bottom is at circumferential $20^{\circ}$. When the yaw angle is $0^{\circ}$, the maximum downwind displacement responses of different blades are higher than 2.7 m. With the increase of yaw angle, MSEs of radial displacement at tower top, downwind displacement of blades, internal force at blade roots all decrease gradually, while the critical wind speed decreases firstly and then increases and finally decreases. The comprehensive analysis shows that the worst aerodynamic performance and wind-induced response of the wind turbine system are achieved when the yaw angle is $0^{\circ}$, whereas the worst stability performance and ultimate bearing capacity are achieved when the yaw angle is $45^{\circ}$.

Measurement of Bubble Size in Flotation Column using Image Analysis System (이미지 분석시스템을 이용한 부선컬럼에서 기포크기의 측정)

  • An, Ki-Seon;Jeon, Ho-Seok;Park, Chul-Hyun
    • Resources Recycling
    • /
    • v.29 no.6
    • /
    • pp.104-113
    • /
    • 2020
  • Bubble size in froth flotation has long been recognized as a key factor which affects the bubble residence time, the bubble surface area flux (Sb) and the carrying rate (Cr). This paper presents method of bubble size measurement, relationship between operating variables and gas dispersion properties in flotation column. Using high speed camera and image analysis system, bubble size has been directly measured as a function of operating parameters (e.g., superficial gas rate (Jg), superficial wash water rate (Jw), frother concentration) in flotation column. Relationship compared to measured and estimated bubble size was obtained within error ranges of ±15~20% and mean bubble size was 0.718mm. From this system the empirical relationship to control the bubble size and distribution has been developed under operating conditions such as Jg of 0.65~1.3cm/s, Jw of 0.13~0.52cm/s and frother concentration of 60~200ppm. Surface tension and bubble size decreased as frother concentration increased. It seemed that critical coalescence concentration (CCC) of bubbles was 200ppm so that surface tension was the lowest (49.24mN/m) at frother concentration of 200ppm. Bubble size tend to increase when superficial gas rate (Jg) decreases and superficial wash water rate Jw and frother concentration increase. Gas holdup is proportional to superficial gas rate as well as frother concentration and superficial wash water rate (at the fixed superficial gas rate).

Design of an Efficient Bit-Parallel Multiplier using Trinomials (삼항 다항식을 이용한 효율적인 비트-병렬 구조의 곱셈기)

  • 정석원;이선옥;김창한
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.13 no.5
    • /
    • pp.179-187
    • /
    • 2003
  • Recently efficient implementation of finite field operation has received a lot of attention. Among the GF($2^m$) arithmetic operations, multiplication process is the most basic and a critical operation that determines speed-up hardware. We propose a hardware architecture using Mastrovito method to reduce processing time. Existing Mastrovito multipliers using the special generating trinomial p($\chi$)=$x^m$+$x^n$+1 require $m^2$-1 XOR gates and $m^2$ AND gates. The proposed multiplier needs $m^2$ AND gates and $m^2$+($n^2$-3n)/2 XOR gates that depend on the intermediate term xn. Time complexity of existing multipliers is $T_A$+( (m-2)/(m-n) +1+ log$_2$(m) ) $T_X$ and that of proposed method is $T_X$+(1+ log$_2$(m-1)+ n/2 ) )$T_X$. The proposed architecture is efficient for the extension degree m suggested as standards: SEC2, ANSI X9.63. In average, XOR space complexity is increased to 1.18% but time complexity is reduced 9.036%.

Implementation of RSA modular exponentiator using Division Chain (나눗셈 체인을 이용한 RSA 모듈로 멱승기의 구현)

  • 김성두;정용진
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.12 no.2
    • /
    • pp.21-34
    • /
    • 2002
  • In this paper we propos a new hardware architecture of modular exponentiation using a division chain method which has been proposed in (2). Modular exponentiation using the division chain is performed by receding an exponent E as a mixed form of multiplication and addition with divisors d=2 or $d=2^I +1$ and respective remainders r. This calculates the modular exponentiation in about $1.4log_2$E multiplications on average which is much less iterations than $2log_2$E of conventional Binary Method. We designed a linear systolic array multiplier with pipelining and used a horizontal projection on its data dependence graph. So, for k-bit key, two k-bit data frames can be inputted simultaneously and two modular multipliers, each consisting of k/2+3 PE(Processing Element)s, can operate in parallel to accomplish 100% throughput. We propose a new encoding scheme to represent divisors and remainders of the division chain to keep regularity of the data path. When it is synthesized to ASIC using Samsung 0.5 um CMOS standard cell library, the critical path delay is 4.24ns, and resulting performance is estimated to be abort 140 Kbps for a 1024-bit data frame at 200Mhz clock In decryption process, the speed can be enhanced to 560kbps by using CRT(Chinese Remainder Theorem). Futhermore, to satisfy real time requirements we can choose small public exponent E, such as 3,17 or $2^{16} +1$, in encryption and verification process. in which case the performance can reach 7.3Mbps.