• 제목/요약/키워드: critical reynolds number

검색결과 145건 처리시간 0.021초

3차원 교차 주름판 내 유동의 불안정성 및 자활 진동 (Instability and Self-Sustained Oscillation of the Flow between Three-Dimensionally Cross-corrugated Plates)

  • 이승엽;최영돈
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2002년도 학술대회지
    • /
    • pp.679-682
    • /
    • 2002
  • Energy dissipations in a general PHE flow are the compounded effects of the piled corrugate geometries and its wall pressure and temperature distributions. In addition, although the exchangers are substantial pieces of engineering equipment, they are composed of a very large number of nominally identical and small geometrical elements. In the present numerical study, the three-dimensionally complicated energy dissipation fields and those wall-shape-induced flow destabilization are investigated in the cross-corrugated passages, which result in high energy transports with comparatively low pressure drop. We revealed the critical conditions as $Re=157.3 for the wall-shape-induced flow destabilization in a general PHE element by initial value method, or shooting method, and compare its value to that of analytical solution of plane Poiseille flow, two-dimensional grooved flow and so on. We also observed the detailed variation of flow field and energy transportation with changes in time and flow variables such as Reynolds number. Lastly, we considered the flow natural frequency, or Strouhal number, with variation of hydrodynamic conditions for the best use of active control, such as forced mass flow rate pulsative flow, to enhance energy transportation.

  • PDF

가상경계 격자볼쯔만법을 이용한 벽면에 근접하여 이동하는 실린더주위의 유동해석 (Numerical Study on Flow over Moving Circular Cylinder Near the Wall Using Immersed Boundary Lattice Boltzmann Method)

  • 김형민
    • 대한기계학회논문집B
    • /
    • 제32권12호
    • /
    • pp.924-930
    • /
    • 2008
  • Immersed boundary method (IBM) is the most effective method to overcome the disadvantage of LBM (Lattice Boltzmann Method) related to the limitation of the grid shape. IBM also make LBM possible to simulate flow over complex shape of obstacle without any treatment on the curved boundary. In the research, IBLBM was used to perform LBM simulation of a flow over a moving circular cylinder to determine the flow feature and aerodynamics characteristic of the cylinder. To ascertain the applicability of IBLBM on the moving obstacle near the wall, it was first simulated for the case of the flow over a fixed circular cylinder in a channel and the results were compared against the solution of moving cylinder in the channel using IBLBM. The simulations were performed in a moderate range of Reynolds number at each moving cylinder to identify the flow feature and aerodynamic characteristics of circular cylinder in a channel. The drag and lift coefficients of the cylinder were calculated from the simulation results. We have numerically confirmed that the critical Reynolds number for vortex shedding is Re=50 and the result is the same as the case of fixed cylinder. As the cylinder approaching to a wall (${\gamma}<2.5$), the 2nd vortex is developed by interacting with the wall boundary-layer vorticity. When the cylinder is very closed to the wall, ${\gamma}<0.6$, the cylinder acts like blockage to block the flow between the cylinder and wall so that the vortex developed on the upper cylinder elongated and time averaged lifting and drag coefficients abruptly increase.

예인수조 LDV를 이용한 평판 경계층과 와이어 타입 난류촉진장치의 상호작용에 관한 연구 (Towed Underwater LDV Measurement of the Interaction of a Wire-Type Stimulator and the Boundary Layer on a Flat Plate)

  • 박종열;서정화;이신형
    • 대한조선학회논문집
    • /
    • 제58권4호
    • /
    • pp.243-252
    • /
    • 2021
  • The present study aims to investigate the interaction of a wire-type turbulence stimulator and the laminar boundary layer on a flat plate by flow field measurement. For the towing tank tests, a one-dimensional Laser Doppler Velocimetry (LDV) attached on a two-axis traverse was used to measure the streamwise velocity component of the boundary layer flow in zero pressure gradient, disturbed by a turbulence stimulator. The wire diameter was 0.5 and 1.0 mm according to the recommended procedures and guidelines suggested by the International Towing Tank Conference. Turbulence development by the stimulator was identified by the skin friction coefficient, mean and Root Mean Square (RMS) of the streamwise velocity. The laminar boundary layer with the absence of the wire-type stimulator was similar to the Blasius solution and previous experimental results. By the stimulator, the mean and RMS of the streamwise velocity were increased near the wall, showing typical features of the fully developed turbulent boundary layer. The critical Reynolds number was reduced from 2.7×105 to 1.0×105 by the disturbances caused by the wire. As the wire diameter and the roughness Reynolds number (Rek) increased, the disturbances by the stimulator increased RMS of the streamwise velocity than turbulent boundary layer.

TTG블록의 교각국부세굴에 대한 수리모형 성능평가 (Hydraulic Model Test on Local Scour Protecting around Bridge Piers with TTG Blocks)

  • 박현주;지정환
    • 한국방재학회 논문집
    • /
    • 제10권6호
    • /
    • pp.165-174
    • /
    • 2010
  • 블록 TTG를 이용한 교각국부세굴보호공의 적합성과 유효성을 확인하기 위해 수리모형실험을 통해 모형 블록의 조도계수를 확인하고 안전성을 검토하였다. 현장조건을 대표하는 수리학적 조건하에서 개별 블록과 블록을 연결하여 매트화한 경우의 한계 안전중량을 결정하였다. 사석, 돌망태, TTG의 세굴보수공 성능을 비교한 결과 TTG의 안전성이 가장 우수하였다. 하상재료의 유출을 막기 위해 블록의 중간 부분을 적정한 자갈로 채우고, 토목섬유의 설치 여부를 검토하여야 한다.

Numerical Investigation of the Stability of Flows induced by a Surface Acoustic Wave along a Slab

  • Chu W. Kwang-Hua
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2003년도 The Fifth Asian Computational Fluid Dynamics Conference
    • /
    • pp.77-79
    • /
    • 2003
  • The stability of flows induced by a surface acoustic wave (SAW) propagating along the deformable walls in a confined parallel-plane microchannel or slab in the laminar flow regime is investigated. The governing equation which was derived by considering the nonlinear coupling between the deformable or waving interface and viscous fluids is linearized and then the problem is solved by a verified code based on the spectral method together with the associated interface and boundary conditions. The value of the critical Reynolds number was found to be near 1439 which is much smaller than the rigid-wall case: 5772 for conventional pressure-driven flows.

  • PDF

마이크로채널 내의 수직 평판을 지나는 2차원 층류유동장에 대한 연구 (STUDY ON TWO-DIMENSIONAL LAMINAR FLOW PAST A VERTICAL PLATE IN A MICROCHANNEL)

  • 윤석현;정재택
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2010년 춘계학술대회논문집
    • /
    • pp.233-238
    • /
    • 2010
  • A two-dimensional laminar flow past a vertical plate in a microchannel is investigated. At far upstream and downstream from the plate in the microchannel, the plane Poiseuille flow exists. The Stokes flow for this microchannel is investigated analytically and then the laminar flow by numerical method. For the Stokes flow analysis, the method of eigenfunction expansion is used. From the results, the streamline pattern and the pressure distribution are plotted, and the additional pressure drop induced by the plate and the force exerted on the plate are calculated as functions of the length of the plate. For the laminar flow, finite difference method (FDM) is used to obtain the vorticity and the stream function. When the Reynolds number exceeds a critical value, a pair of viscous eddies appears behind the plate.

  • PDF

절단 원추형 Squeeze Film Damper 베어링과 회전축계의 동특성에 관한 연구 (A Study on the Dynamic Characteristics of Truncated Cone Type Squeeze Film Damper Bearing and Rotor System)

  • 윤석철
    • 한국안전학회지
    • /
    • 제12권1호
    • /
    • pp.9-18
    • /
    • 1997
  • This paper is a study on the dynamic characteristics of truncated cone type squeeze film damper(SFD) bearing and rotor system. This model can alter the radial oil film gap which Is Important to the performance of rotor-bearing system and manufactured easily to change the shape concept of traditional circular type SFD bearing. In theoretical analysis, the oil film pressure distribution, the oil film force, the film damping coefficient and the eccentricity ratio, etc. were induced with regard to the film inertia effect. The film damping coefficients and optimum design parameters are calculated. When unbalance parameter U is greater than 0.2, the nonlinear vibration such as "Jump" phenomena appears in the vicinity of rotor critical speed. At this time, the increases of bearing parameter U, journal distance S, Reynolds number Re can control this unstable vibration. The experimental results show that SFD hearing and rotor system which are designed according to the design parameters in the stable region are operated stably in rotational speed 9,600rpm without nonsynchronous behavior.

  • PDF

전단박화유체의 수직상향 난류유동시 저항감소에 관한 연구 (A Study on the Drag Reduction of Shear Thinning Fluid with Vertical upward Turbulent Flow)

  • 차경옥;김봉각;김재근
    • 대한기계학회논문집B
    • /
    • 제22권12호
    • /
    • pp.1647-1656
    • /
    • 1998
  • The drag reduction is the phenomenon that occurs only when the shear stress from the wall of pipe is beyond the critical point. The drag reduction increase as the molecular weight, concentration of the polymer and Reynolds number increase, but it is limited by Virk's maximum drag reduction asymptote. Because of the strong shear force for the polymer on the turbulent flow, the molecular weight and the drag reduction do not decrease. Such mechanical degradation of the polymer occurs in all polymer solvent systems. This paper is to identify and develop high performance polymer additives for fluid transportations with the benefits of turbulent drag reduction. In addition, drag reduction in vertical flow by measuring the pressure drop and local void fraction on vertical-up flow of close system is evaluated.

3차원 Floquet 안정성 분석을 위한 가상 경계법의 적용 (APPLICATION OF AN IMMERSED BOUNDARY METHOD FOR THREE-DIMENSIONAL FLOQUET STABILITY ANALYSIS)

  • 윤동혁;양경수
    • 한국전산유체공학회지
    • /
    • 제14권4호
    • /
    • pp.41-47
    • /
    • 2009
  • An immersed boundary method(IBM, Kim et al.(2001)) for simulating flows over complex geometries is applied to computation of three-dimensional Floquet stability of a periodic wake. Floquet stability analysis is employed to extract different modes of three-dimensional instability. To verify the present method, a fully-resolved Floquet stability calculation for flow past a circular cylinder is considered. There are two different instability modes with long(mode A) and short (mode B) spanwise wavelengths for the periodic wake of a circular cylinder. The critical Reynolds number and the most unstable spanwise wavelengths of modes A and B are computed using the present method, and compared with other authors' results currently available.

정4각단면 덕트 내에서 비정상 천이유동에 관한 연구 (A Study on Transitional Unsteady Flows in a Square Duct)

  • 박길문;박선종;최주호;유영태
    • 설비공학논문집
    • /
    • 제1권3호
    • /
    • pp.252-263
    • /
    • 1989
  • A system of conservation equations for steady, oscillatory and pulsating duct flows are solved analytically by linearizing non-linear convective terms. Analytical solutions of velocity profiles for these flows are obtained in the form of infinite series. The experimental study for the air flow in a square duct ($40mm{\times}40mm$ and 400 mm long) is carried out to measure velocity profiles and other parameters by using a hot-wire anemometer with data acquisition and processing system. Major characteristics of the flows such as the classification of flow patterns, determination of critical Reynolds number and velocity profiles is accomplished from the experismental results.

  • PDF