• 제목/요약/키워드: critical nonlinearity

검색결과 119건 처리시간 0.021초

Probabilistic analysis of micro-film buckling with parametric uncertainty

  • Ying, Zuguang;Wang, Yong;Zhu, Zefei
    • Structural Engineering and Mechanics
    • /
    • 제50권5호
    • /
    • pp.697-708
    • /
    • 2014
  • The intentional buckling design of micro-films has various potential applications in engineering. The buckling amplitude and critical strain of micro-films are the crucial parameters for the buckling design. In the reported studies, the film parameters were regarded as deterministic. However, the geometrical and physical parameters uncertainty of micro-films due to manufacturing becomes prominent and needs to be considered. In the present paper, the probabilistic nonlinear buckling analysis of micro-films with uncertain parameters is proposed for design accuracy and reliability. The nonlinear differential equation and its asymptotic solution for the buckling micro-film with nominal parameters are firstly established. The mean values, standard deviations and variation coefficients of the buckling amplitude and critical strain are calculated by using the probability densities of uncertain parameters such as the film span length, thickness, elastic modulus and compressive force, to reveal the effects of the film parameter uncertainty on the buckling deformation. The results obtained illustrate the probabilistic relation between buckling deformation and uncertain parameters, and are useful for accurate and reliable buckling design in terms of probability.

Exact solutions of vibration and postbuckling response of curved beam rested on nonlinear viscoelastic foundations

  • Nazira Mohamed;Salwa A. Mohamed;Mohamed A. Eltaher
    • Advances in aircraft and spacecraft science
    • /
    • 제11권1호
    • /
    • pp.55-81
    • /
    • 2024
  • This paper presents the exact solutions and closed forms for of nonlinear stability and vibration behaviors of straight and curved beams with nonlinear viscoelastic boundary conditions, for the first time. The mathematical formulations of the beam are expressed based on Euler-Bernoulli beam theory with the von Karman nonlinearity to include the mid-plane stretching. The classical boundary conditions are replaced by nonlinear viscoelastic boundary conditions on both sides, that are presented by three elements (i.e., linear spring, nonlinear spring, and nonlinear damper). The nonlinear integro-differential equation of buckling problem subjected to nonlinear nonhomogeneous boundary conditions is derived and exactly solved to compute nonlinear static response and critical buckling load. The vibration problem is converted to nonlinear eigenvalue problem and solved analytically to calculate the natural frequencies and to predict the corresponding mode shapes. Parametric studies are carried out to depict the effects of nonlinear boundary conditions and amplitude of initial curvature on nonlinear static response and vibration behaviors of curved beam. Numerical results show that the nonlinear boundary conditions have significant effects on the critical buckling load, nonlinear buckling response and natural frequencies of the curved beam. The proposed model can be exploited in analysis of macrosystem (airfoil, flappers and wings) and microsystem (MEMS, nanosensor and nanoactuators).

Nonlinear stability and bifurcations of an axially accelerating beam with an intermediate spring-support

  • Ghayesh, Mergen H.;Amabili, Marco
    • Coupled systems mechanics
    • /
    • 제2권2호
    • /
    • pp.159-174
    • /
    • 2013
  • The present work aims at investigating the nonlinear dynamics, bifurcations, and stability of an axially accelerating beam with an intermediate spring-support. The problem of a parametrically excited system is addressed for the gyroscopic system. A geometric nonlinearity due to mid-plane stretching is considered and Hamilton's principle is employed to derive the nonlinear equation of motion. The equation is then reduced into a set of nonlinear ordinary differential equations with coupled terms via Galerkin's method. For the system in the sub-critical speed regime, the pseudo-arclength continuation technique is employed to plot the frequency-response curves. The results are presented for the system with and without a three-to-one internal resonance between the first two transverse modes. Also, the global dynamics of the system is investigated using direct time integration of the discretized equations. The mean axial speed and the amplitude of speed variations are varied as the bifurcation parameters and the bifurcation diagrams of Poincare maps are constructed.

Nonlinear stability of non-axisymmetric functionally graded reinforced nano composite microplates

  • Loghman, Abbas;Arani, Ali Ghorbanpour;Barzoki, Ali Akbar Mosallaie
    • Computers and Concrete
    • /
    • 제19권6호
    • /
    • pp.677-687
    • /
    • 2017
  • The nonlinear buckling response of nano composite anti-symmetric functionally graded polymeric microplate reinforced by single-walled carbon nanotubes (SWCNTs) rested on orthotropic elastomeric foundation with temperature dependent properties is investigated. For the carbon-nanotube reinforced composite (CNTRC) microplate, a uniform distribution (UD) and four types of functionally graded (FG) distribution are considered. Based on orthotropic Mindlin plate theory, von Karman geometric nonlinearity and Hamilton's principle, the governing equations are derived. Generalized differential quadrature method (GDQM) is employed to calculate the non-linear buckling response of the plate. Effects of FG distribution type, elastomeric foundation, aspect ratio (thickness to width ratio), boundary condition, orientation of foundation orthotropy and temperature are considered. The results are validated. It is found that the critical buckling load without elastic medium is significantly lower than considering Winkler and Pasternak medium.

인간형 로봇의 안정성을 위한 백래쉬 보상기 구현 (Implementation of Backlash Compensator for Stability of a Humanoid Robot)

  • 정병재;공정식;김진걸;허욱열
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2004년도 학술대회 논문집 정보 및 제어부문
    • /
    • pp.681-683
    • /
    • 2004
  • This paper describes the control of a geared DC motor having a backlash for implementation of a humanoid robot using disturbance observer. Critical problem of the humanoid robot is caused by the nonlinearity such as a backlash. To meet this problem, a control method using disturbance observer has been proposed. The disturbance observer is designed to estimate the effects of nonlinearities in the system, to make the nonlinear system behave linearly. To design the low-pass filter in the disturbance observer, cut-off frequency of the output should be found. The goal of this paper is the implementation of the proposed system, compensating the backlash effect. To accomplish the goat, PD control and disturbance observer are employed to the system with no load and full load. As a result, system stability can be guaranteed by compensating the effect of backlash. In addition, real experiment shows the proposed control methodology will satisfy the stable working of a humanoid type in the future.

  • PDF

ON DISCONTINUOUS ELLIPTIC PROBLEMS INVOLVING THE FRACTIONAL p-LAPLACIAN IN ℝN

  • Kim, In Hyoun;Kim, Yun-Ho;Park, Kisoeb
    • 대한수학회보
    • /
    • 제55권6호
    • /
    • pp.1869-1889
    • /
    • 2018
  • We are concerned with the following fractional p-Laplacian inclusion: $$(-{\Delta})^s_pu+V(x){\mid}u{\mid}^{p-2}u{\in}{\lambda}[{\underline{f}}(x,u(x)),\;{\bar{f}}(s,u(x))]$$ in ${\mathbb{R}}^N$, where $(-{\Delta})^s_p$ is the fractional p-Laplacian operator, 0 < s < 1 < p < $+{\infty}$, sp < N, and $f:{\mathbb{R}}^N{\times}{\mathbb{R}}{\rightarrow}{\mathbb{R}}$ is measurable with respect to each variable separately. We show that our problem with the discontinuous nonlinearity f admits at least one or two nontrivial weak solutions. In order to do this, the main tool is the Berkovits-Tienari degree theory for weakly upper semicontinuous set-valued operators. In addition, our main assertions continue to hold when $(-{\Delta})^s_pu$ is replaced by any non-local integro-differential operator.

AN APPLICATION OF CRITICAL POINT THEORY TO THE NONLINEAR HYPERBOLIC SYSTEM

  • Jung, Tacksun;Choi, Q-Heung
    • Korean Journal of Mathematics
    • /
    • 제15권2호
    • /
    • pp.149-165
    • /
    • 2007
  • We investigate the existence of multiple nontrivial solutions $u(x,t)$ for a perturbation $b[({\xi}-{\eta}+2)^+-2]$ of the hyperbolic system with Dirichlet boundary condition $$(0.1)\;L{\xi}={\mu}[({\xi}-{\eta}+2)^+-2]\;in\;({-{\frac{{\pi}}{2}}},{\frac{{\pi}}{2}}){\times}\mathbb{R},\\L{\eta}={\nu}[({\xi}-{\eta}+2)^+-2]\;in\;({-{\frac{{\pi}}{2}}},{\frac{{\pi}}{2}}){\times}\mathbb{R},$$, where $u^+$=max{u,o}, ${\mu}$, ${\nu}$ are nonzero constants. Here L is the wave operator in $\mathbb{R}^2$ and the nonlinearity $({\mu}-{\nu})[({\xi}-{\eta}+2)^+-2]$ crosses the eigenvalues of the wave operator.

  • PDF

Super convergent laminated composite beam element for lateral stability analysis

  • Kim, Nam-Il;Choi, Dong-Ho
    • Steel and Composite Structures
    • /
    • 제15권2호
    • /
    • pp.175-202
    • /
    • 2013
  • The super convergent laminated composite beam element is newly derived for the lateral stability analysis. For this, a theoretical model of the laminated composite beams is developed based on the first-order shear deformation beam theory. The present laminated beam takes into account the transverse shear and the restrained warping induced shear deformation. The second-order coupling torque resulting from the geometric nonlinearity is rigorously derived. From the principle of minimum total potential energy, the stability equations and force-displacement relationships are derived and the explicit expressions for the displacement parameters are presented by applying the power series expansions of displacement components to simultaneous ordinary differential equations. Finally, the member stiffness matrix is determined using the force-displacement relationships. In order to show accuracy and superiority of the beam element developed by this study, the critical lateral buckling moments for bisymmetric and monosymmetric I-beams are presented and compared with other results available in the literature, the isoparametric beam elements, and shell elements from ABAQUS.

Advanced inelastic static (pushover) analysis for earthquake applications

  • Elnashai, A.S.
    • Structural Engineering and Mechanics
    • /
    • 제12권1호
    • /
    • pp.51-69
    • /
    • 2001
  • Whereas the potential of static inelastic analysis methods is recognised in earthquake design and assessment, especially in contrast with elastic analysis under scaled forces, they have inherent shortcomings. In this paper, critical issues in the application of inelastic static (pushover) analysis are discussed and their effect on the obtained results appraised. Areas of possible developments that would render the method more applicable to the prediction of dynamic response are explored. New developments towards a fully adaptive pushover method accounting for spread of inelasticity, geometric nonlinearity, full multi-modal, spectral amplification and period elongation, within a framework of fibre modelling of materials, are discussed and preliminary results are given. These developments lead to static analysis results that are closer than ever to inelastic time-history analysis. It is concluded that there is great scope for improvements of this simple and powerful technique that would increase confidence in its employment as the primary tool for seismic analysis in practice.

Nonlinear consolidation of soft clays subjected to cyclic loading - Part II: Verification and application

  • Yazdani, Hessam;Toufigh, Mohammad Mohsen
    • Geomechanics and Engineering
    • /
    • 제4권4호
    • /
    • pp.243-249
    • /
    • 2012
  • In the companion paper, the nonlinear consolidation of soft clays subjected to cyclic loading was analytically investigated. This paper reports the results of an experimental program conducted to verify some critical assumptions made in the analytical study. It, also, includes a numerical study carried out to examine the capability of the proposed theory to determine the consolidation characteristics of soft clays subjected to cyclic loading. Results show that the permeability of the soft clays does not significantly change during the cyclic loading. It is also shown that, compared to the Terzaghi's solution for a linear clay, the inherit nonlinearity of the clay tends to decrease the degree of consolidation due to the smaller rate of dissipation in the excess pore water pressure.