• 제목/요약/키워드: critical load

검색결과 1,582건 처리시간 0.031초

Theoretical and experimental serviceability performance of SCCs connections

  • Maghsoudi, Ali Akbar
    • Structural Engineering and Mechanics
    • /
    • 제39권2호
    • /
    • pp.241-266
    • /
    • 2011
  • The Self Compacting Concrete, SCC is the new generation type of concrete which is not needed to be compacted by vibrator and it will be compacted by its own weight. Since SCC is a new innovation and also the high strength self compacting concrete, HSSCC behavior is like a brittle material, therefore, understanding the strength effect on the serviceability performance of reinforced self compacting concretes is critical. For this aim, first the normal and high strength self compacting concrete, NSSCC and HSSCC was designed. Then, the serviceability performance of reinforced connections consisting of NSSCC and HSSCC were investigated. Twelve reinforced concrete connections (L = 3 m, b = 0.15 m, h = 0.3 m) were simulated, by this concretes, the maximum and minimum reinforcement ratios ${\rho}$ and ${\rho}^{\prime}$ (percentage of tensile and compressive steel reinforcement) are in accordance with the provision of the ACI-05 for conventional RC structures. This study was limited to the case of bending without axial load, utilizing simple connections loaded at mid span through a stub (b = 0.15 m, h = 0.3 m, L = 0.3 m) to simulate a beam-column connection. During the test, concrete and steel strains, deflections and crack widths were measured at different locations along each member. Based on the experimental readings and observations, the cracked moment of inertia ($I_{cr}$) of members was determined and the results were compared with some selective theoretical methods. Also, the flexural crack widths of the members were measured and the applicability for conventional vibrated concrete, as for ACI, BS and CSA code, was verified for SCCs members tested. A comparison between two Codes (ACI and CSA) for the theoretical values cracking moment is indicate that, irrespective of the concrete strength, for the specimens reported, the prediction values of two codes are almost equale. The experimental cracked moment of inertia $(I_{cr})_{\exp}$ is lower than its theoretical $(I_{cr})_{th}$ values, and therefore theoretically it is overestimated. Also, a general conclusion is that, by increasing the percentage of ${\rho}$, the value of $I_{cr}$ is increased.

Experimental, numerical and analytical studies on a novel external prestressing technique for concrete structural components

  • Lakshmanan, N.;Saibabu, S.;Murthy, A. Rama Chandra;Ganapathi, S. Chitra;Jayaraman, R.;Senthil, R.
    • Computers and Concrete
    • /
    • 제6권1호
    • /
    • pp.41-57
    • /
    • 2009
  • This paper presents the details of a novel external prestressing technique for strengthening of concrete members. In the proposed technique, transfer of external force is in shear mode on the end block thus creating a complex stress distribution and the required transverse prestressing force is lesser compared to conventional techniques. Steel brackets are provided on either side of the end block for transferring external prestressing force and these are connected to the anchor blocks by expansion type anchor bolts. In order to validate the technique, an experimental investigation has been carried out on post-tensioned end blocks. Performance of the end blocks have been studied for design, cracking and ultimate loads. Slip and slope of steel bracket have been recorded at various stages during the experiment. Finite element analysis has been carried out by simulating the test conditions and the responses have been compared. From the analysis, it has been observed that the computed slope and slip of the steel bracket are in good agreement with the corresponding experimental observations. A simplified analytical model has been proposed to compute load-deformation of the loaded steel bracket with respect to the end block. Yield and ultimate loads have been arrived at based on force/moment equilibrium equations at critical sections. Deformation analysis has been carried out based on the assumption that the ratio of axial deformation to vertical deformation of anchor bolt would follow the same ratio at the corresponding forces such as yield and ultimate. It is observed that the computed forces, slip and slopes are in good agreement with the corresponding experimental observations.

Computational analysis and design formula development for the design of curved plates for ships and offshore structures

  • Kim, Joo-Hyun;Park, Joo-Shin;Lee, Kyung-Hun;Kim, Jeong-Hyeon;Kim, Myung-Hyun;Lee, Jae-Myung
    • Structural Engineering and Mechanics
    • /
    • 제49권6호
    • /
    • pp.705-726
    • /
    • 2014
  • In general, cylindrically curved plates are used in ships and offshore structures such as wind towers, spa structures, fore and aft side shell plating, and bilge circle parts in merchant vessels. In a number of studies, it has been shown that curvature increases the buckling strength of a plate under compressive loading, and the ultimate load-carrying capacity is also expected to increase. In the present paper, a series of elastic and elastoplastic large deflection analyses were performed using the commercial finite element analysis program (MSC.NASTRAN/PATRAN) in order to clarify and examine the fundamental buckling and collapse behaviors of curved plates subjected to combined axial compression and lateral pressure. On the basis of the numerical results, the effects of curvature, the magnitude of the initial deflection, the slenderness ratio, and the aspect ratio on the characteristics of the buckling and collapse behavior of the curved plates are discussed. On the basis of the calculated results, the design formula was developed to predict the buckling and ultimate strengths of curved plates subjected to combined loads in an analytical manner. The buckling strength behaviors were simulated by performing elastic large deflection analyses. The newly developed formulations were applied in order to perform verification analyses for the curved plates by comparing the numerical results, and then, the usefulness of the proposed method was demonstrated.

Fracture behavior and pore structure of concrete with metakaolin

  • Akcay, Burcu;Sengul, Cengiz;Tasdemir, Mehmet ali
    • Advances in concrete construction
    • /
    • 제4권2호
    • /
    • pp.71-88
    • /
    • 2016
  • Metakaolin, a dehydroxylated product of the mineral kaolinite, is one of the most valuable admixtures for high-performance concrete applications, including constructing reinforced concrete bridges and impact- and fire-resistant structures. Concretes produced using metakaolin become more homogeneous and denser compared to normal-strength concrete. Yet, these changes cause a change of volume throughout hardening, and increase the brittleness of hardened concrete significantly. In order to examine how the use of metakaolin affects the fracture and mechanical behavior of high-performance concrete we produced concretes using a range of water to binder ratio (0.42, 0.35 and 0.28) at three different weight fractions of metakaolin replacement (8%, 16% and 24%). The results showed that the rigidity of concretes increased with using 8% and 16% metakaolin, while it decreased in all series with 24% of metakaolin replacement. Similar effect has also been observed for other mechanical properties. While the peak loads in load-displacement curves of concretes decreased significantly with increasing water to binder ratio, this effect have been found to be diminished by using metakaolin. Pore structure analysis through mercury intrusion porosimetry test showed that the addition of metakaolin decreased the critical pore size of paste phases of concrete, and increasing the amount of metakaolin reduced the total porosity for the specimens with low water to binder ratios in particular. To determine the optimal values of water to binder ratio and metakaolin content in producing high-strength and high-performance concrete we applied a multi-objective optimization, where several responses were simultaneously assessed to find the best solution for each parameter.

고력볼트 접합부표면의 방식도장변수에 따른 체결력 평가 (Evaluation on Clamping Force of High Strength Bolts By Coating Parameters of Faying Surfaces)

  • 나환선;이현주
    • Corrosion Science and Technology
    • /
    • 제11권2호
    • /
    • pp.48-55
    • /
    • 2012
  • Clamping force of a high strength bolt is reduced by a certain period of time after the initial set-up. In case of special treatments on faying surfaces such as protective coating, clamping force is relaxed more severely. Tests for slip critical joints subject to various faying surface parameters were conducted. Five different surface treatments were tested including mill scale surface, blast surface, rust surface and coated surfaces. Each specimen was composed of F10T M20 of high strength bolts and steel plates. Based on the result of slip coefficient test, blast treatment surface showed 0.59, rust treatment surface showed 0.54 and inorganic zinc treatment surface exhibited 0.44. Clean mill treatment surface and red lead paint treatment surface were 0.23, 0.21 respectively. It is identified that the slip coefficient in Korean structural design guide should be determined for various surface conditions. Subsequently from long term relaxation test of ASTM A 490 high strength bolts, relaxation of no-coated surfaces such as blast, clean mill, rust treatment, the loss of initial clamping load was 10.5%, 13.6% and 7.9% for 1,000 hours, while the loss of initial clamping force was reached as 15.0%, 18.7% more than the required redundancy 10% in case of inorganic zinc and red lead painted treatment. It is required that the limit of relaxation on coated faying surface should be established separately for various surfaces.

In-vitro development of a temporal abutment screw to protect osseointegration in immediate loaded implants

  • Garcia-Roncero, Herminio;Caballe-Serrano, Jordi;Cano-Batalla, Jordi;Cabratosa-Termes, Josep;Figueras-Alvarez, Oscar
    • The Journal of Advanced Prosthodontics
    • /
    • 제7권2호
    • /
    • pp.160-165
    • /
    • 2015
  • PURPOSE. In this study, a temporal abutment fixation screw, designed to fracture in a controlled way upon application of an occlusal force sufficient to produce critical micromotion was developed. The purpose of the screw was to protect the osseointegration of immediate loaded single implants. MATERIALS AND METHODS. Seven different screw prototypes were examined by fixing titanium abutments to 112 Mozo-Grau external hexagon implants (MG Osseous$^{(R)}$; Mozo-Grau, S.A., Valladolid, Spain). Fracture strength was tested at $30^{\circ}$ in two subgroups per screw: one under dynamic loading and the other without prior dynamic loading. Dynamic loading was performed in a single-axis chewing simulator using 150,000 load cycles at 50 N. After normal distribution of obtained data was verified by Kolmogorov-Smirnov test, fracture resistance between samples submitted and not submitted to dynamic loading was compared by the use of Student's t-test. Comparison of fracture resistance among different screw designs was performed by the use of one-way analysis of variance. Confidence interval was set at 95%. RESULTS. Fractures occurred in all screws, allowing easy retrieval. Screw Prototypes 2, 5 and 6 failed during dynamic loading and exhibited statistically significant differences from the other prototypes. CONCLUSION. Prototypes 2, 5 and 6 may offer a useful protective mechanism during occlusal overload in immediate loaded implants.

고속철도 교량의 현장실험 및 감쇠비 개선에 따른 공진 시 동적응답의 분석 (Field Tests and Resonance Behavior Corresponding to the Damping Ratio of a High Speed Railroad Bridge)

  • 김성일;김현민;박동욱
    • 한국철도학회논문집
    • /
    • 제16권4호
    • /
    • pp.305-310
    • /
    • 2013
  • 고속철도 교량에서는 상업 운행 중에는 대부분 통과속도가 일정하여 속도별 동적 거동에 대한 실험적 계측 및 분석이 불가능하다. 경부고속철도 2단계 개통 전 시운전 시 KTX 열차의 속도별 시운전이 가능하였으며, 속도별 운행에 대한 교량의 동적응답 계측이 가능하였다. 이 계측 결과는 개발된 교량/열차 상호작용해석에 대한 검증 및 비교 분석으로 연계될 수 있었다. 대부분의 속도대역에서 해석과 실험에 의한 결과가 잘 일치함을 알 수 있었으나, 공진이 발생하는 임계속도 부근 주행에서는 상대적으로 큰 응답 차이가 발생하였다. 본 논문에서는 이에 대한 원인 분석을 수행하였으며, 공진 발생 시 감쇠비 값을 측정 시 응답을 통해 재추정한 결과를 반영한 재해석을 수행하였다.

고진공 터보 분자펌프용 자기베어링 시스템의 디지털 선형 제어시스템 (Digital Linear Control System for a Magnetic Bearing System of a High Vacuum Turbomolecular Pump)

  • 노승국;경진호;박종권;남우호;고득용
    • 한국진공학회지
    • /
    • 제19권4호
    • /
    • pp.256-264
    • /
    • 2010
  • 본 논문에서는 고진공용 터보분자펌프의 비접촉 고속회전을 위한 자기베어링 시스템의 디지털 제어시스템의 설계에 대하여 소개하였으며, 실례로 800 l/s급의 고진공 펌프에 대하여 축 유연모드의 후방향 위험속도를 넘는 최대 40,000 rpm까지의 회전실험 결과를 나타내었다. 제안된 제어시스템은 기본적으로 PID 기반의 직접궤환 제어기와 자이로스코픽 모멘트 효과를 제어하기 위한 교차궤환기, 유연모우드 감쇄를 위한 리드필터와 동기진동 저감을 위한 노치필터 등으로 구성되어 있으며, 이러한 제어기는 자기부상형 터보분자펌프 외에 고속 플라이휠과 같은 자기베어링에 적용될 수 있다.

강풍 발생 시 국내 가로수의 취약성 분석 (Wind Fragility for Urban Street Tree in Korea)

  • 심 비리야붓;정우영
    • 한국습지학회지
    • /
    • 제21권4호
    • /
    • pp.298-304
    • /
    • 2019
  • 이 논문에서는 한국의 가로수에 대한 바람 취약성을 유도하는 분석 방법을 보여준다. 몬테 카를로 시뮬레이션 방법은 도시 가로수의 파괴 확률을 결정하는 데 사용되었다. 이 확률 결과는 대구 지역의 가로수를 기반으로 4 가지 유형에 대한 바람 취약성 매개 변수를 결정하는 데 사용되었으며, 이로 인해 풍하중에서 가로수 손상 확률에 영향을 미치는 주요 요인이 직경이라는 것을 나타낸다. 또한, 선택된 4 가지 유형 중에서 높이 7m, 직경 35cm의 가로수는 손상률이 제일 낮은 반면, 높이 8m, 직경 30cm의 가로수는 가장 낮은 풍하중에서 저항하였다. 높이 7m의 가로수의 평균 손상 풍속은 직경 30cm 및 35cm에 대해 각각 43.8m/s 및 50.6m/s로 나타났으며, 높이 8m의 가로수의 평균 손상 풍속은 직경 30cm 및 35cm에 대하여 각각 38.7m/s 및 45.4m/s로 나타났다.

암에 근입된 말뚝의 주면저항력 예측 (Prediction of the Shaft Resistance of Pile Sockets)

  • Seidel, J.P.;Cho, Chun-Whan
    • 한국지반공학회논문집
    • /
    • 제18권5호
    • /
    • pp.281-293
    • /
    • 2002
  • 기존의 말뚝 설계방법들은 시공 및 재하시험 결과들로부터 축적된 말뚝거동에 대한 경험을 바탕으로 이루어 졌다고 할 수 있다. 이와 같이 만들어진 암에 근입된 말뚝의 설계에 대한 전통적인 방법들에 대해 고찰한 결과, 암에 근입된 말뚝의 경험적인 설계방법들은 설계시 상당한 불확실성을 내포하는 것으로 나타났다. 따라서 본 논문에서는 암에 근입된 말뚝의 주면저항을 예측하는 새로운 방법에 대한 기본원리를 고찰하였다. 이 방법으로 예측한 말뚝의 지지력은 현장에서 측정한 결과와 잘 일치하는 것으로 나타났다. 제한된 변수연구 결과이지만 본 연구를 통해 암의 거칠기와 말뚝의 직경은 암반에 근입된 말뚝의 거동에 중요한 역할을 하는 것을 알 수 있었다 또한 국내 화강편마암에 대한 현장 사례연구를 통해 이방법의 적용성을 검토하였다.