• Title/Summary/Keyword: critical initial energy

Search Result 104, Processing Time 0.035 seconds

Introducing Strategy of Cool Roofs based on Comparative Evaluation of Foreign Cases (해외 사례분석을 통한 Cool Roof의 도입 방안)

  • Choi, Jin-Ho;Um, Jung-Sup
    • Journal of Environmental Impact Assessment
    • /
    • v.19 no.6
    • /
    • pp.591-605
    • /
    • 2010
  • Cool roofs are currently being emerged as one of important mechanism to save energy in relation to the building. This paper reviews worldwide experiences (USA, Japan and EU etc) for the potential benefits cool roofs offer in relation to building energy saving for comparison purposes. It is confirmed that there is a significant potential to the energy saving by introducing the cool roof in a Korean climate because of similarity in terms of HDD (Heating Degree Day) and CDD (Cooling Degree Day) as those countries reviewed. Such a comparative study highlights that the type of measurements performed and the quantitative parameters reported from the countries should be standardized in Korean context in order to implement further comparable experiments for scientifically sound investigations. It is anticipated that this research output could be used as a valuable reference in implementing a Nation-wide cool roofing strategy in the central and local governments since a suitable technical, more objective direction has been proposed based on the measured, fully quantitative performance of the involved components of a cool roof system in the global context. From this critical review, a very important step has been made concerning the practicality of cool roof in Korean context. Ultimately, the suggestion in this paper will greatly contribute to opening new possibilities for introducing cool roof in this country, proposed as an initial aim of this paper.

Roles of Acid-Base Surface Interaction on Thermal and Mechanical Interfacial Behaviors of SiC/PMMA Nanocomposites (산-염기 표면반응이 탄화규소/PMMA 나노복합재료의 열적·기계적 계면특성에 미치는 영향)

  • Park, Soo-Jin;Oh, Jin-Seok
    • Korean Chemical Engineering Research
    • /
    • v.43 no.5
    • /
    • pp.632-636
    • /
    • 2005
  • In this work, the effect of chemical treatments on surface properties of SiC was investigated in thermal and mechanical interfacial behaviors of SiC/PMMA nanocomposites. The acid/base value, contact angles, and FT-IR analysis were performed for the study of surface characteristics of the SiC studied. The thermal stabilities of the SiC/PMMA nanocomposites were investigated by thermogravimetric analysis (TGA). Also the mechanical interfacial properties of the composites were studied in critical stress intensity factor ($K_{IC}$) and critical strain energy release rate ($G_{IC}$) measurements. As a result, the acidically treated SiC (A-SiC) had higher acid value than that of untreated SiC (V-SiC) or basically treated SiC (B-SiC). The acidic solution treatment led to an increase in surface free energy of the SiC, mainly due to the increase of its specific component. Thermal and mechanical interfacial properties of the SiC/PMMA nanocomposites, including initial decomposition temperature (IDT), $K_{IC}$, and $G_{IC}$ had been improved in the acidic treatment on SiC. This was due to the improvement in the interfacial bonding strength, resulting from the acid-base interfacial interactions between the fillers and polymeric matrix.

A Novel Controller for Electric Springs Based on Bode Diagram Optimization

  • Wang, Qingsong;Cheng, Ming;Jiang, Yunlei
    • Journal of Power Electronics
    • /
    • v.16 no.4
    • /
    • pp.1396-1406
    • /
    • 2016
  • A novel controller design is presented for the recently proposed electric springs (ESs). The dynamic modeling is analyzed first, and the initial Bode diagram is derived from the s-domain transfer function in the open loop. The design objective is set according to the characteristics of a minimum phase system. Step-by-step optimizations of the Bode diagram are provided to illustrate the proposed controller, the design of which is different from the classical multistage leading/lagging design. The final controller is the accumulation of the transfer function at each step. With the controller and the recently proposed δ control, the critical load voltage can be regulated to follow the desired waveform precisely while the fluctuations and distortions of the input voltage are passed to the non-critical loads. Frequency responses at any point can be modified in the Bode diagram. The results of the modeling and controller design are validated via simulations. Hardware and software designs are provided. A digital phase locked loop is realized with the platform of a digital signal processor. The effectiveness of the proposed control is also validated by experimental results.

Numerical simulation of the flow in pipes with numerical models

  • Gao, Hongjie;Li, Xinyu;Nezhad, Abdolreza Hooshmandi;Behshad, Amir
    • Structural Engineering and Mechanics
    • /
    • v.81 no.4
    • /
    • pp.523-527
    • /
    • 2022
  • The objective of this study is to simulate the flow in pipes with various boundary conditions. Free-pressure fluid model, is used in the pipe based on Navier-Stokes equation. The models are solved by using the numerical method. A problem called "stability of pipes" is used in order to compare frequency and critical fluid velocity. When the initial conditions of problem satisfied the instability conditions, the free-pressure model could accurately predict discontinuities in the solution field. Employing nonlinear strains-displacements, stress-strain energy method the governing equations were derived using Hamilton's principal. Differential quadrature method (DQM) is used for obtaining the frequency and critical fluid velocity. The results of this paper are analyzed by hyperbolic numerical method. Results show that the level of numerical diffusion in the solution field and the range of well-posedness are two important criteria for selecting the two-fluid models. The solutions for predicting the flow variables is approximately equal to the two-pressure model 2. Therefore, the predicted pressure changes profile in the two-pressure model is more consistent with actual physics. Therefore, in numerical modeling of gas-liquid two-phase flows in the vertical pipe, the present model can be applied.

The Analysis of Fracture Propagation in Hydraulic Fracturing using Artificial Slot Model (인공슬롯을 고려한 수압파쇄 균열의 발전양상에 관한 연구)

  • 최성웅;이희근
    • Tunnel and Underground Space
    • /
    • v.5 no.3
    • /
    • pp.251-265
    • /
    • 1995
  • One of the most important matters in stress measurement by hydraulic fracturing technique is the determination of the breakdown pressure, reopening pressure, and shut-in pressure, since these values are the basic input data for the calculation of the in-situ stress. The control of the fracture propagation is also important when the hydraulic fracturing technique is applied to the development of groundwater system, geothermal energy, oil, and natural gas. In this study, a laboratory scale hydraulic fracturing device was built and a series of model tests were conducted with cube blocks of Machon gabbro. A new method called 'flatjack method' was adopted to determine shut-in pressure. The initial stress calculated from the shut-in pressure measured by flatjack method showed much higher accuracy than the stress determined by the conventional method. The dependency of the direction of fracture propagation on the state of the initial stresses was measured by introducin g artificial slots in the borehole made by water jet system. Numerical modeling by BEM was also performed to simulate the fracture propagation process. Both results form numerical and laboratory tests showed good agreement. From this study which provides the extensive results on the determination of shut-in pressure and the control of fracture propagation which are the critical issue in the recent hydraulic fracturing, it is conclued that in-situ stress measurement and the control of fracture propagation could be achived more accurately.

  • PDF

Self Ignition Phenomena of High Pressure Hydrogen Released into Tube with Diaphragm Rupture Conditions (튜브 내 누출되는 고압수소의 격막파열조건에 따른 자발점화 현상)

  • Lim, Han Seuk;Lee, Sang Yoon;Lee, Hyoung Jin;Jeung, In-Seuck
    • 한국연소학회:학술대회논문집
    • /
    • 2014.11a
    • /
    • pp.215-218
    • /
    • 2014
  • High combustion efficiency of hydrogen could make it an ideal source of green energy in the future. At this time, high pressure vessel is the most reasonable method of storing hydrogen. However, such a high pressurized vessel could pose a critical threat if ruptured. For this reason, it is important to understand the mechanism of hydrogen's self-ignition when a high-pressure hydrogen released into air. This paper presents several visualization images as experimental results using high-speed camera. From the visualization images, the ignition is initiated near rupture disk immediately after failure of disk. And the initial ignition and flame is stronger as a rupture pressure increases. However, this ignition region do not affect the general self-ignition mechanism when a high-pressure hydrogen is released into air through tue after failure of disk.

  • PDF

Nonlinear Fracture Analysis of Polymer-Impregnated Concrete Flextural Members (폴리머침투콘크리트 휨부재의 비선형 파괴해석)

  • 변근주;이상민;유동우;김태진
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1992.10a
    • /
    • pp.202-207
    • /
    • 1992
  • The objective of this study is to develop analytical techniques of polymer impregnated concrete flexural members for its proper applications. crystalline methylmethacrylate(MMA) is chosen as a monomer of polymer impregnants, On the basis of members. fracture toughness, fracture energy , critical crack width, and tension softening relations near crack tip are formulated in terms of member depth, initial notch length and the flexural strength of normal concrete. The structural analysis rocedure and the finite element computer program developed in the study are applicable to evaluate elastic behavior, ultimate strength, and tension softening behavior of MMA type PIC structural members subject to various loading conditions. It is concluded that the developed structural analysis procedure and the finite element computer program are applicable to analysis and design of in-situ and precast PIC structural members.

  • PDF

A dragonfly inspired flapping wing actuated by electro active polymers

  • Mukherjee, Sujoy;Ganguli, Ranjan
    • Smart Structures and Systems
    • /
    • v.6 no.7
    • /
    • pp.867-887
    • /
    • 2010
  • An energy-based variational approach is used for structural dynamic modeling of the IPMC (Ionic Polymer Metal Composites) flapping wing. Dynamic characteristics of the wing are analyzed using numerical simulations. Starting with the initial design, critical parameters which have influence on the performance of the wing are identified through parametric studies. An optimization study is performed to obtain improved flapping actuation of the IPMC wing. It is shown that the optimization algorithm leads to a flapping wing with dimensions similar to the dragonfly Aeshna Multicolor wing. An unsteady aerodynamic model based on modified strip theory is used to obtain the aerodynamic forces. It is found that the IPMC wing generates sufficient lift to support its own weight and carry a small payload. It is therefore a potential candidate for flapping wing of micro air vehicles.

Investigation of hyperbolic dynamic response in concrete pipes with two-phase flow

  • Zheng, Chuanzhang;Yan, Gongxing;Khadimallah, Mohamed Amiine;Nouri, Alireza Zamani;Behshad, Amir
    • Advances in concrete construction
    • /
    • v.13 no.5
    • /
    • pp.361-365
    • /
    • 2022
  • The objective of this study is to simulate the two-phase flow in pipes with various two-fluid models and determinate the shear stress. A hyperbolic shear deformation theory is used for modelling of the pipe. Two-fluid models are solved by using the conservative shock capturing method. Energy relations are used for deriving the motion equations. When the initial conditions of problem satisfied the Kelvin Helmholtz instability conditions, the free-pressure two-fluid model could accurately predict discontinuities in the solution field. A numerical solution is applied for computing the shear stress. The two-pressure two-fluid model produces more numerical diffusion compared to the free-pressure two-fluid and single-pressure two-fluid models. Results show that with increasing the two-phase percent, the shear stress is reduced.

COMPARISON OF DRYOUT POWER DATA BETWEEN CANFLEX MK-V AND CANFLEX MK-IV BUNDLE STRINGS IN UNCREPT AND CREPT CHANNELS

  • JUN JI SU;LEUNG L.K.H.
    • Nuclear Engineering and Technology
    • /
    • v.37 no.6
    • /
    • pp.565-574
    • /
    • 2005
  • The CANFLEX Mk-V bundle is designed to improve upon the critical heat flux (CHF) characteristics of the CANFLEX Mk-IV bundle. The main difference between these two bundles is an increase in bearing pad height of about 0.3 mm in the CANFLEX Mk-IV bundle. This change in bearing pad height leads to an increase in gap flow at the bottom of the bundle, primarily eliminating the localized narrow-gap effect that limits the CHF of the CANFLEX Mk-IV bundle. The objective of this paper is to examine the effects of bearing pad height and pressure tube creep on the sheath-temperature distribution, dryout power, and dryout location, as observed ken full-scale bundle tests, between CANFLEX Mk-IV and Mk-V bundles In uncrept and crept channels. A comparison of surface-temperature differences between the top and bottom elements of the bundles showed that increasing the bearing pad height has led to a more homogeneous enthalpy distribution in subchannels of the bundle. Initial dryout locations of the CANFLEX Mk-V bundle were mainly observed at the mid-spacer plane of either the $10^{th}$ (about $80\%$) or $11^{th}$ ($20\%$) bundle in the 12-bundle string, as compared to the mid-spacer and downstream-button planes for the CANFLEX Mk-IV bundle. Dryout power and boiling-length-average (BLA) CHF values exhibit consistent trends and little scatter with varying flow conditions for both types of CANFLEX bundles in uncrept and crept channels. An increase in pressure tube creep has led to a reduction in dryout power (about $20\%$ far the $3.3\%$ crept channel and $27\%$ for the $5.1\%$ crept channel as compared to dryout powers for the uncrept channel). Increasing the bearing pad height of the CANFLEX bundle has led to an increase in the dryout power. Overall, the dryout power of the CANFLEX Mk-V bundle is 7 to $10\%$ higher than that of the CANFLEX Mk-IV bundle at the inlet temperature range of interest (i.e., between 243 and $290^{\circ}C$).