Browse > Article
http://dx.doi.org/10.12989/sss.2010.6.7.867

A dragonfly inspired flapping wing actuated by electro active polymers  

Mukherjee, Sujoy (Department of Aerospace Engineering, Indian Institute of Science)
Ganguli, Ranjan (Department of Aerospace Engineering, Indian Institute of Science)
Publication Information
Smart Structures and Systems / v.6, no.7, 2010 , pp. 867-887 More about this Journal
Abstract
An energy-based variational approach is used for structural dynamic modeling of the IPMC (Ionic Polymer Metal Composites) flapping wing. Dynamic characteristics of the wing are analyzed using numerical simulations. Starting with the initial design, critical parameters which have influence on the performance of the wing are identified through parametric studies. An optimization study is performed to obtain improved flapping actuation of the IPMC wing. It is shown that the optimization algorithm leads to a flapping wing with dimensions similar to the dragonfly Aeshna Multicolor wing. An unsteady aerodynamic model based on modified strip theory is used to obtain the aerodynamic forces. It is found that the IPMC wing generates sufficient lift to support its own weight and carry a small payload. It is therefore a potential candidate for flapping wing of micro air vehicles.
Keywords
ionic polymer metal composites; dynamics; flapping wing; optimization; unsteady aerodynamics; micro air vehicles;
Citations & Related Records
Times Cited By KSCI : 8  (Citation Analysis)
Times Cited By Web Of Science : 1  (Related Records In Web of Science)
Times Cited By SCOPUS : 2
연도 인용수 순위
1 Akle, B.J., Bennett, M.D. and Leo, D.J. (2006), "High-strain ionomeric ionic liquid electroactive actuators", Sensor. Actuat. A-Phys., 126(1), 173-181.   DOI   ScienceOn
2 Arora, J.S. (2004), Introduction to optimum design, 2nd Edition, Elsevier Academic Press, San Diego, California, USA.
3 Azuma, A., Azuma, S., Watanabe, I. and Furuta, T. (1985), "Flight mechanics of a dragonfly", J. Exp. Biol., 116(1), 79-107.
4 Bar-Cohen, Y. (Editor) (2004), Electroactive Polymer (EAP) actuators as artificial muscles - Reality, potential, and challenges, 2nd Edition, SPIE Press, Bellingham, Washington, USA.
5 Betteridge, D.S. and Archer, R.D. (1974), "A study of the mechanics of flapping wings", Aeronaut. Q., 25, 129-142.   DOI
6 Bohorquez, F., Samuel, P., Sirohi, J., Pines, D., Rudd, L. and Perel, R. (2003), "Design, analysis and hover performance of a rotary wing micro air vehicle", J. Am. Helicopter Soc., 48(2), 80-90.   DOI   ScienceOn
7 Buechler, M.A. and Leo, D.J. (2007), "Characterization and variational modeling of ionic polymer transducers", J. Vib. Acoust., 129(1), 113-120.   DOI
8 Carrion, J.E. and Spencer, Jr. B.F. (2008), "Real-time hybrid testing using model-based delay compensation", Smart Struct. Syst., 4(6), 809-828.   DOI
9 Casciati, F. and van der Eijk, C. (2008), "Variability in mechanical properties and microstructure characterization of CuAlBe shape memory alloys for vibration mitigation", Smart Struct. Syst., 4(2), 103-121.   DOI
10 Combes, S.A. and Daniel, T.L. (2003), "Flexural stiffness in insect wings II. Spatial distribution and dynamic wing bending", J. Exp. Biol., 206(17), 2989-2997.   DOI   ScienceOn
11 Cosyn, P. and Vierendeels, J. (2007), "Design of fixed wing micro air vehicles", Aeronaut. J., 111(1119), 315-326.   DOI
12 Cox, A., Monopoli, D., Cveticanin, D., Goldfarb, M. and Garcia, E. (2002), "The development of elastodynamic components for piezoelectrically actuated flapping micro-air vehicles", J. Intel. Mat. Syst. Str., 13(9), 611-615.   DOI   ScienceOn
13 DeLaurier, J.D. (1993), "An aerodynamic model for flapping-wing flight", Aeronaut. J., 97(964), 125-130.
14 Deng, X., Schenato, L., Wu, W.C. and Sastry, S.S. (2006), "Flapping flight for biomimetic robotic insects: Part I - System modeling", IEEE T. Robot., 22(4), 776-788.   DOI
15 Dudley, R. (2000), The biomechanics of insect flight - Form, function and evolution, Princeton University Press, Princeton, New Jersey.
16 Grasmeyer, J.M. and Keennon, M.T. (2001), Development of the black widow micro air vehicle, Fixed and Flapping Wing Aerodynamics for Micro Air Vehicle Applications (Ed. T.J. Mueller), Progress in Astronautics and Aeronautics Series, AIAA, Reston, VA, USA.
17 Hein, B.R. and Chopra, I. (2007), "Hover performance of a micro air vehicle: Rotors at low Reynolds number", J. Am. Helicopter Soc., 52(3), 254-262.   DOI   ScienceOn
18 Ke, S., Zhigang, W. and Chao, Y. (2008), "Analysis and flexible structural modeling for oscillating wing utilizing aeroelasticity", Chin. J. Aeronaut., 21(5), 402-410.   DOI   ScienceOn
19 Kim, S.M. and Kim, K.J. (2008), "Palladium buffer-layered high performance Ionic Polymer-Metal Composites", Smart Mater. Struct., 17(6), 1363-1368.
20 Kim, J.M. and Koratkar, N. (2005), "Effect of unsteady blade pitching motion on aerodynamic performance of microrotorcraft", J. Aircraft, 42(4), 874-881.   DOI   ScienceOn
21 Liu, S.C. (2008), "Sensors, smart structures technology and steel structures", Smart Struct. Syst., 4(5), 517-530.   DOI
22 Lee, S., Park, H.C. and Kim, K.J. (2005), "Equivalent modeling for Ionic Polymer-Metal Composite actuators based on beam theories", Smart Mater. Struct., 14(6), 1363-1368.   DOI   ScienceOn
23 Lee, S.G., Park, H.C. and Pandia, S.D. (2006), "Performance improvement of IPMC (Ionic Polymer Metal Composites) for a flapping actuator", Int. J. Control Autom. Syst., 4(6), 748-755.   과학기술학회마을
24 Manna, M.C., Sheikh, A.H. and Bhattacharyya, R. (2009), "Static analysis of rubber components with piezoelectric patches using nonlinear finite element", Smart Struct. Syst., 5(1), 23-42.   DOI
25 McIntosh, S.H., Agrawal, S.K. and Khan, Z. (2006), "Design of a mechanism for biaxial rotation of a wing for a hovering vehicle", IEEE-ASME T. Mech., 11(2), 145-153.   DOI
26 Nelson, J. and Koratkar, N. (2005), "Effect of miniaturized gurney flaps on aerodynamic performance of microscale rotors", J. Aircraft, 42(2), 557-561.   DOI   ScienceOn
27 Okamoto, M. and Azuma, A. (2005), "Experimental study on aerodynamic characteristics of unsteady wings at low Reynolds number", AIAA J., 43(12), 2526-2536.   DOI   ScienceOn
28 Park, H.C., Lee, S.K. and Kim, K.J. (2005a), "Equivalent modeling for shape design of IPMC (Ionic Polymer Metal Composite) as flapping actuator", Key Eng. Mater., 297-300, 616-621.   DOI
29 Park, S., Yun, C.B., Roh, Y. and Lee, J.J. (2005b), "Health monitoring of steel structures using impedance of thickness modes at PZT patches", Smart Struct. Syst., 1(4), 339-353.   DOI
30 Pines, D.J. and Bohorquez, F. (2006), "Challenges facing future micro-air-vehicle development", J. Aircraft, 43(2), 290-305.   DOI   ScienceOn
31 Singh, B. and Chopra, I. (2008), "Insect-based hover-capable flapping wings for micro air vehicles: Experiments and analysis", AIAA J., 46(9), 2115-2135.   DOI   ScienceOn
32 Ramasamy, M. and Leishman, J.G. (2006), "Phase-locked particle image velocimetry measurements of a flapping wing", J. Aircraft, 43(6), 1867-1875.   DOI
33 Shahinpoor, M., Bar-Cohen, Y., Simpson, J.O. and Smith, J. (1998), "Ionic polymer-metal composites (IPMCs) as biomimetic sensors, actuators and artificial muscles - a review", Smart Mater. Struct., 7(6), R15-R30.   DOI   ScienceOn
34 Shyy, W., Berg, M. and Ljungqvist, D. (1999), "Flapping and flexible wings for biological and micro air vehicles", Prog. Aerosp. Sci., 35(5), 455-505.   DOI   ScienceOn
35 Sirohi, J., Parsons, E. and Chopra, I. (2007), "Hover performance of a cycloidal rotor for a micro air vehicle", J. Am. Helicopter Soc., 52(3), 263-279.   DOI   ScienceOn
36 Tanaka, K., Oonuki, M., Moritake, N. and Uchiki, H. (2009), "$Cu_2ZnSnS_4$ thin film solar cells prepared by non-vacuum processing", Sol. Energ. Mat. Sol. C., 93(5), 583-587.   DOI   ScienceOn
37 Tarascio, M.J., Ramasamy, M., Chopra, I. and Leishman, J.G. (2005), "Flow visualization of micro air vehicle scaled insect-based flapping wings", J. Aircraft, 42(2), 385-390.   DOI   ScienceOn
38 Tiwari, R., Kim, K.J. and Kim, S.M. (2008), "Ionic polymer-metal composite as energy harvesters", Smart Struct. Syst., 4(5), 549-563.   DOI
39 Wakeling, J.M. and Ellington, C.P. (1997), "Dragonfly flight. I. Gliding flight and steady-state aerodynamic forces", J. Exp. Biol., 200(3), 543-556.
40 Wang, Z.J. (2000), "Vortex shedding and frequency selection in flapping flight", J. Fluid Mech., 410, 323-341.   DOI
41 Willmott, A.P. and Ellington, C.P. (1997), "The mechanics of flight in the hawkmoth Manduca sexta I. Kinematics of hovering and forward flight", J. Exp. Biol., 200(21), 2705-2722.
42 Zeng, L., Matsumoto, H. and Kawachi, K. (1996), "A fringe shadow method for measuring flapping angle and torsional angle of a dragonfly wing", Meas. Sci. Technol., 7(5), 776-781.   DOI   ScienceOn
43 Wu, J.H. and Sun, M. (2004), "Unsteady aerodynamic forces of a flapping wing", J. Exp. Biol., 207(23), 1137-1150.   DOI
44 Yamamoto, M. and Isogai, K. (2005), "Measurement of unsteady fluid dynamics forces for a mechanical dragonfly model", AIAA J., 43(12), 2475-2480.   DOI   ScienceOn
45 Ying, Z.G., Ni, Y.Q. and Ko, J.M. (2009), "A semi-active stochastic optimal control strategy for nonlinear structural systems with MR dampers", Smart Struct. Syst., 5(1), 69-79.   DOI