• Title/Summary/Keyword: critical infrastructure

Search Result 489, Processing Time 0.028 seconds

On the measurement of the transient dynamics of the nanocomposites reinforced concrete systems as the main part of bridge construction

  • Shuzhen Chen;Hou Chang-ze;Gongxing Yan;M. Atif
    • Structural Engineering and Mechanics
    • /
    • v.90 no.4
    • /
    • pp.417-428
    • /
    • 2024
  • Nanocomposite-reinforced concrete systems have gained increasing attention in bridge construction due to their enhanced mechanical properties and durability. Understanding the transient dynamics of these advanced materials is crucial for ensuring the structural integrity and performance of bridge infrastructure under dynamic loading conditions. This paper presents a comprehensive study of the measurement techniques employed for assessing the transient dynamics of nanocompositereinforced concrete systems in bridge construction applications. A numerical method, including modal analysis are discussed in detail, highlighting their advantages, limitations, and applications. Additionally, recent advancements in sensor technologies, data acquisition systems, and signal processing techniques for capturing and analyzing transient responses are explored. The paper also addresses challenges and opportunities in the measurement of transient dynamics, such as the characterization of nanocomposite-reinforced concrete materials, the development of accurate numerical models, and the integration of advanced sensing technologies into bridge monitoring systems. Through a critical review of existing literature and case studies, this paper aims to provide insights into best practices and future directions for the measurement of transient dynamics in nanocompositereinforced concrete systems, ultimately contributing to the design, construction, and maintenance of resilient and sustainable bridge infrastructure.

Design of Flexible BIM System for Alignment-Based Facility (선형기반 시설물을 위한 Flexible BIM 시스템의 설계)

  • Lee, Seung Soo;Lee, Min Joo;Jeong, Jong Yoon;Seo, Jong Won
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.34 no.2
    • /
    • pp.677-685
    • /
    • 2014
  • Despite the significant benefits of BIM (Building Information Modeling), it is not being vitalized for the facilities that are designed based on the horizontal and vertical alignments because of the lack of flexibility in manipulating surface models generated based on alignments. Alignment-based design produces a surface model in one piece through the definition of the typical cross-section along the alignment. Therefore, linking these alignment-based 3D surface models, that are not modularized and difficult to partition, to the required attribute information is very difficult This paper presents design of a flexible BIM technology suitable for the alignment-based civil infrastructure by providing the partitioning functionality for surface models, the contents library for cross-sectional design components, and the attribute information along with the critical functionalities needed for the design, construction and maintenance of alignment-based civil infrastructure.

Management, Orchestration and Security in Network Function Virtualization (네트워크 기능 가상화 관리 및 오케스트레이션 기능과 보안)

  • Kim, Hyuncheol
    • Convergence Security Journal
    • /
    • v.16 no.2
    • /
    • pp.19-23
    • /
    • 2016
  • The design, management, and operation of network infrastructure have evolved during the last few years, leveraging on innovative technologies and architectures. With such a huge trend, due to the flexibility and significant economic potential of these technologies, software defined networking (SDN) and network functions virtualization (NFV) are emerging as the most critical key enablers. SDN/NFV enhancing the infrastructure agility, thus network operators and service providers are able to program their own network functions (e.g., gateways, routers, load balancers) on vendor independent hardware substrate. They facilitating the design, delivery and operation of network services in a dynamic and scalable manner. In NFV, the management and orchestration (MANO) orchestrates other specific managers such as the virtual infrastructure manager (VIM) and the VNF Manager (VNFM). In this paper, we examine the contents of these NFV MANO systematically and proposes a security system in a virtualized environment.

A Study on Risk Assessments and Protection Improvement for Electric Power Infrastructures against High-altitude Electromagnetic Pulse (전력기반시설의 고 고도 핵 전자기파에 대한 위험성 검토 및 방호 개선방안 연구)

  • Chung, Yeon-Choon
    • Convergence Security Journal
    • /
    • v.19 no.3
    • /
    • pp.43-50
    • /
    • 2019
  • In a hyper-connected society, electric power infrastructures and information and communication infrastructures are the core of critical national infrastructures. However, electric power infrastructure is very deadly to high-frequency nuclear electromagnetic pulse (HEMP) threats recently issued by North Korea, so the resilience through rapid recovery after attack is directly related to the survivability of our country. Therefore, electric power infrastructure should take precedence over any other key infrastructure, with preemptive protection measures and fast recovery plans. In this paper, the characteristics of the HEMP threats was examined, and the risks and effective major protection measures of the electric power infrastructures are discussed. In the future, it is expected that it will be able to help establish the direction of enactment and revision of legal schems related to the 'high power EMP infringement prevention' for Korea's electric power infrastructures.

A Study on the Impact of IT and SCM Process Management Capability on e-SCM Performance (IT와 SCM 프로세스 관리역량이 e-SCM 성과에 미치는 영향에 관한 연구)

  • Lee, Sun-Ro;Kim, Ki-Young
    • Asia pacific journal of information systems
    • /
    • v.17 no.3
    • /
    • pp.79-103
    • /
    • 2007
  • The main purpose of this study is to define antecedents that influence e-SCM synchronization and to investigate how it affects e-SCM performance. We, therefore, investigate (1) the impact of firms' internal IT planning capabilities on e-SCM synchronization and on SCM process management capability, (2) the impact of firms' internal IT infrastructure on e-SCM synchronization and on SCM process management capability, (3) the impact of firms' internal SCM process management capabilities on e-SCM synchronization, and finally (4) the impact of e-SCM synchronization on SCM performance. A survey has been administrated to the firms' SCM and marketing staffs and 171 returns analyzed. The results show that (1) IT plan has not direct impacts on e-SCM synchronization, but has direct impacts on organizational support, purchasing, and operations processes except logistics process. IT plan, however, has indirect impacts on e-SCM synchronization through purchasing and operations of SCM process management capability. (2) IT infrastructure has both direct and indirect effects on e-SCM synchronization, and also has direct impacts on organizational support, purchasing, and operations processes except logistics process. (3) SCM process management capabilities have direct impacts on e-SCM synchronization. Among these SCM core processes purchasing positively influences operations, which in turn positively influences logistics process management capability. (4) e-SCM synchronization has positive impacts on SCM performance indicator (SCOR), such as delivery reliability, responsiveness & flexibility, and cost. These results indicate that e-SCM synchronization can be critical to achieve better internal performance like cost and external performance like delivery reliability, responsiveness & flexibility of firms' SCM. In sum, this study demonstrates that the intervening role of e-SCM synchronization between e-SCM performance and IT management capability and between e-SCM performance and SCM core process management capability has been significant in achieving better e-SCM performance. Therefore, it can be suggested that e-SCM performance should be accomplished in consequence of the acceleration of e-SCM synchronization through the enhancement of preceding factors for the e-SCM synchronization.

Status and Trend of Foreign Underground Data Centers (해외 지하 데이터센터의 현황과 동향 분석)

  • Lee, Chulho;Choi, Soon-Wook;Kang, Tae-Ho;Chang, Soo-Ho
    • Tunnel and Underground Space
    • /
    • v.29 no.1
    • /
    • pp.52-63
    • /
    • 2019
  • It is highly in demand to establish a bunker-type underground data center to ensure the safety of national critical data, such as financial information and medical information, and prevent those outflow of national important data. In particular, the security of a data center which is a key national structure has become a social issue due to EMP weapon and earthquakes, but data centers in the nation have not been able to deal with it properly. Therefore, it is necessary to develop an underground data center that is safe from human-induced and natural disasters while reducing power costs by utilizing the benefits of underground spaces such as constant temperature and isolation. In this analysis, the status and trends of data centers around the world were analyzed and based on those trend analyses, the research strategy for underground data center were discussed.

A semi-supervised interpretable machine learning framework for sensor fault detection

  • Martakis, Panagiotis;Movsessian, Artur;Reuland, Yves;Pai, Sai G.S.;Quqa, Said;Cava, David Garcia;Tcherniak, Dmitri;Chatzi, Eleni
    • Smart Structures and Systems
    • /
    • v.29 no.1
    • /
    • pp.251-266
    • /
    • 2022
  • Structural Health Monitoring (SHM) of critical infrastructure comprises a major pillar of maintenance management, shielding public safety and economic sustainability. Although SHM is usually associated with data-driven metrics and thresholds, expert judgement is essential, especially in cases where erroneous predictions can bear casualties or substantial economic loss. Considering that visual inspections are time consuming and potentially subjective, artificial-intelligence tools may be leveraged in order to minimize the inspection effort and provide objective outcomes. In this context, timely detection of sensor malfunctioning is crucial in preventing inaccurate assessment and false alarms. The present work introduces a sensor-fault detection and interpretation framework, based on the well-established support-vector machine scheme for anomaly detection, combined with a coalitional game-theory approach. The proposed framework is implemented in two datasets, provided along the 1st International Project Competition for Structural Health Monitoring (IPC-SHM 2020), comprising acceleration and cable-load measurements from two real cable-stayed bridges. The results demonstrate good predictive performance and highlight the potential for seamless adaption of the algorithm to intrinsically different data domains. For the first time, the term "decision trajectories", originating from the field of cognitive sciences, is introduced and applied in the context of SHM. This provides an intuitive and comprehensive illustration of the impact of individual features, along with an elaboration on feature dependencies that drive individual model predictions. Overall, the proposed framework provides an easy-to-train, application-agnostic and interpretable anomaly detector, which can be integrated into the preprocessing part of various SHM and condition-monitoring applications, offering a first screening of the sensor health prior to further analysis.

A Review of Urban Flooding: Causes, Impacts, and Mitigation Strategies (도시 홍수: 원인, 영향 및 저감 전략 고찰)

  • Jin-Yong Lee
    • The Journal of Engineering Geology
    • /
    • v.33 no.3
    • /
    • pp.489-502
    • /
    • 2023
  • Urban floods pose significant challenges to cities worldwide, driven by the interplay between urbanization and climate change. This review examines recent studies of urban floods to understand their causes, impacts, and potential mitigation strategies. Urbanization, with its increase in impermeable surfaces and altered drainage patterns, disrupts natural water flow, exacerbating surface runoff during intense rainfall events. The impacts of urban floods are far-reaching, affecting lives, infrastructure, the economy, and the environment. Loss of life, property damage, disruptions to critical services, and environmental consequences underscore the urgency of effective urban flood management. To mitigate urban floods, integrated flood management strategies are crucial. Sustainable urban planning, green infrastructure, and improved drainage systems play pivotal roles in reducing flood vulnerabilities. Early warning systems, emergency response planning, and community engagement are essential components of flood preparedness and resilience. Looking to the future, climate change projections indicate increased flood risks, necessitating resilience and adaptation measures. Advances in research, data collection, and modeling techniques will enable more accurate flood predictions, thus guiding decision-making. In conclusion, urban flooding demands urgent attention and comprehensive strategies to protect lives, infrastructure, and the economy.

Trend Analysis of Intelligent Cyber Attacks on Power Systems (전력시스템 대상 지능형 사이버공격 동향 분석)

  • Soon-Min Hong;Jung-ho Eom;Jae-Kyung Lee
    • Convergence Security Journal
    • /
    • v.23 no.3
    • /
    • pp.21-28
    • /
    • 2023
  • The development of information and communication technology in the 21st century has increased operational efficiency by providing hyper-connectivity and hyper-intelligence in the control systems of major infrastructure, but is also increasing security vulnerabilities, exposing it to hacking threats. Among them, the electric power system that supplies electric power essential for daily life has become a major target of cyber-attacks as a national critical infrastructure system. Recently, in order to protect these power systems, various security systems have been developed and the stability of the power systems has been maintained through practical cyber battle training. However, as cyber-attacks are combined with advanced ICT technologies such as artificial intelligence and big data, it is not easy to defend cyber-attacks that are becoming more intelligent with existing security systems. In order to defend against such intelligent cyber-attacks, it is necessary to know the types and aspects of intelligent cyber-attacks in advance. In this study, we analyzed the evolution of cyber attacks combined with advanced ICT technology.

The US National Ecological Observatory Network and the Global Biodiversity Framework: national research infrastructure with a global reach

  • Katherine M. Thibault;Christine M, Laney;Kelsey M. Yule;Nico M. Franz;Paula M. Mabee
    • Journal of Ecology and Environment
    • /
    • v.47 no.4
    • /
    • pp.219-227
    • /
    • 2023
  • The US National Science Foundation's National Ecological Observatory Network (NEON) is a continental-scale program intended to provide open data, samples, and infrastructure to understand changing ecosystems for a period of 30 years. NEON collects co-located measurements of drivers of environmental change and biological responses, using standardized methods at 81 field sites to systematically sample variability and trends to enable inferences at regional to continental scales. Alongside key atmospheric and environmental variables, NEON measures the biodiversity of many taxa, including microbes, plants, and animals, and collects samples from these organisms for long-term archiving and research use. Here we review the composition and use of NEON resources to date as a whole and specific to biodiversity as an exemplar of the potential of national research infrastructure to contribute to globally relevant outcomes. Since NEON initiated full operations in 2019, NEON has produced, on average, 1.4 M records and over 32 TB of data per year across more than 180 data products, with 85 products that include taxonomic or other organismal information relevant to biodiversity science. NEON has also collected and curated more than 503,000 samples and specimens spanning all taxonomic domains of life, with up to 100,000 more to be added annually. Various metrics of use, including web portal visitation, data download and sample use requests, and scientific publications, reveal substantial interest from the global community in NEON. More than 47,000 unique IP addresses from around the world visit NEON's web portals each month, requesting on average 1.8 TB of data, and over 200 researchers have engaged in sample use requests from the NEON Biorepository. Through its many global partnerships, particularly with the Global Biodiversity Information Facility, NEON resources have been used in more than 900 scientific publications to date, with many using biodiversity data and samples. These outcomes demonstrate that the data and samples provided by NEON, situated in a broader network of national research infrastructures, are critical to scientists, conservation practitioners, and policy makers. They enable effective approaches to meeting global targets, such as those captured in the Kunming-Montreal Global Biodiversity Framework.