• Title/Summary/Keyword: critical failure surface

Search Result 128, Processing Time 0.024 seconds

Revision of Modified Cam Clay Failure Surface Based on the Critical State Theory (한계 상태 기반 수정 Modified Cam Clay 파괴면)

  • Woo, Sang Inn
    • Journal of the Korean Geotechnical Society
    • /
    • v.36 no.4
    • /
    • pp.5-15
    • /
    • 2020
  • This paper proposes a revised Modified Cam Clay type failure surface based on the critical state theory. In the plane of the mean effective and von Mises stresses, the original Modified Cam Clay model has an elliptic failure surface which leads the critical-state mean effective stress to be always half of the pre-consolidation mean effective stress without hardening and evolution rules. This feature does not agree with the real mechanical response of clay. In this study, the preconsolidation mean effective stress only reflects the consolidation history of the clay whereas the critical state mean effective stress only relies on the currenct void ratio of clay. Therefore, the proposed failure surface has a distorted elliptic shape without any fixed ratio between the preconsolidation and critical state mean effective stresses. Numerical simulations for various clays using failure surfaces as yield surface provide mechanical responses similar to the experimental data.

Shallow Failure Characteristics of Weathered Granite Soil Slope in accordance with the Rainfall Infiltration (강우침투에 따른 화강풍화토 사면의 얕은파괴 특성)

  • Kim, Sun-Hak
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.10 no.10
    • /
    • pp.2810-2818
    • /
    • 2009
  • In order to examine the characteristic of shallow failure in cut slopes composed of weathered granite soil, this study calculated critical permeability coefficient according to rainfall characteristic in Korea, performed stability analysis according to the representative physical properties of weathered granite soil distributed in Korea such as horizontal distance to the failure surface of cut slope, slope inclination, slope height, and the depth of wetting by rainfall, and analyzed the results. In the results of analyzing critical permeability coefficient, when the local rainfall characteristic was considered, the maximum critical permeability coefficient was $7.16{\times}10^{-4}cm/sec$. We judged that shallow failure according to wetting depth should be considered when rainfall below the critical rainfall intensity lasts longer than the minimum rainfall duration in cut slopes composed of weathered granite soil, which had a critical permeability coefficient lower than the maximum critical permeability coefficient. Furthermore, using simulated failure surface, this study could understand the characteristic of shallow failure in cut slopes based on the change in slope safety factor according to horizontal distance, wetting depth, and strength parameter.

Fracture mechanics analysis of multipurpose canister for spent nuclear fuels under horizontal/oblique drop accidents

  • Jae-Yoon Jeong;Cheol-Ho Kim;Hune-Tae Kim;Ji-Hye Kim;Yun-Jae Kim
    • Nuclear Engineering and Technology
    • /
    • v.55 no.12
    • /
    • pp.4647-4658
    • /
    • 2023
  • In this paper, elastic-plastic fracture mechanics analysis is performed to determine the critical crack sizes of the multipurpose canister (MPC) manufactured using austenitic stainless steel under dynamic loading conditions that simulate drop accidents. Firstly, dynamic finite element (FE) analysis is performed using Abaqus v.2018 with the KORAD (Korea Radioactive Waste Agency)-21 model under two drop accident conditions. Through the FE analysis, critical locations and through-thickness stress distributions in the MPC are identified, where the maximum plastic strain occurs during impact loadings. Then, the evaluation using the failure assessment diagram (FAD) is performed by postulating an external surface crack at the critical location to determine the critical crack depth. It is found that, for the drop cases considered in this paper, the principal failure mechanism for the circumferential surface crack is found to be the plastic collapse due to dominant high bending axial stress in the thickness. For axial cracks, the plastic collapse is also the dominant failure mechanism due to high membrane hoop stress, followed by the ductile tearing analysis. When incorporating the strain rate effect on yield strength and fracture toughness, the critical crack depth increases from 10 to 20%.

Investigation of Effect of Input Ground Motion on the Failure Surface of Mountain Slopes

  • Khalid, Muhammad Irslan;Pervaiz, Usman;Park, Duhee
    • Journal of the Korean GEO-environmental Society
    • /
    • v.22 no.7
    • /
    • pp.5-12
    • /
    • 2021
  • The reliable seismic stability evaluation of the natural slopes and geotechnical structures has become a critical factor of the design. Pseudo-static or permanent displacement methods are typically employed to evaluate the seismic slope performance. In both methods, the effect of input ground motion on the sliding surface is ignored, and failure surface from the limit equilibrium method is used. For the assessment of the seismic sensitivity of failure surface, two-dimensional non-linear finite element analyses are performed. The performance of the finite element model was validated against centrifuge measurements. A parametric study with a range of input ground motion was performed, and numerical results were used to assess the influence of ground motion characteristics on the sliding surface. Based on the results, it is demonstrated that the characteristics of input ground motion have a significant influence on the location of the seismically induce failure surface. In addition to dynamic analysis, pseudo-static analyses were performed to evaluate the discrepancy. It is observed that sliding surfaces developed from pseudo-static and dynamic analyses are different. The location of the failure surface change with the amplitude and Tm of motion. Therefore, it is recommended to determine failure surfaces from dynamic analysis

Experimental Study on the Slope Failure of Embankment (성토사면의 붕괴에 관한 실험적 연구)

  • 강우묵;이달원;지인택;조재홍
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.35 no.3
    • /
    • pp.47-62
    • /
    • 1993
  • The laboratorv model test was carried out to investigate the behavior of pore water pressure, the critical amount of rainfall for slope failure, the pattern of failure, and the variation of seepage line at the slope with the uniform material of embankment by changing the slope angles and rainfall intensities. The results were was summarised as follows : 1.At the beginning stage of rainfall, the negative pore pressure appeared at the surface of slope and the positive pore pressure at the deep parts. But, the negative one turned into the positive one as the rainfall continued and this rapidly increased about 50 to 100 minutes before the slope failure. 2.The heavier the rainfall intensity, the shorter the time, and the milder the slope, the longer the time took to reach the failure of slope. 3.As the angle of the slope became milder, the critical amount of rainfall for slope failure became greater. 4.Maximum pore water pressure was 10 to 40g/cm$^2$ at the toe of slope and 50 to 90g/cm$^2$at the deep parts. 5.In the respect of the pattern of slope failure, surface failure of slope occurred locally at the toe of slope at the A-soil and failure of slope by surface flow occurred gradually at the top part of slope at the B-soil. 6.As the rainfall continued and the saturation zone in the embankment was formed, the seepage line went rapidly up and also the time to reach the total collapse of slope took longer at the B-soil. 7.As the position of the seepage line went up and the strength parameter accordingly down, the safety factor was 2.108 at the A-soil and 2.150 at the B-soil when the slope occured toe failure. Minimum safety factor was rapidly down to 0.831 at the A-soil and to 0.936 at the B-soil when the slope collapsed totally at the top part of slope.

  • PDF

Probabilistic analysis of anisotropic rock slope with reinforcement measures

  • Zoran Berisavljevic;Dusan Berisavljevic;Milos Marjanovic;Svetlana Melentijevic
    • Geomechanics and Engineering
    • /
    • v.34 no.3
    • /
    • pp.285-301
    • /
    • 2023
  • During the construction of E75 highway through Grdelica gorge in Serbia, a major failure occurred in the zone of reinforced rock slope. Excavation was performed in highly anisotropic Paleozoic schist rock formation. The reinforcement consisted of the two rows of micropile wall with pre-stressed anchors. Forces in anchors were monitored with load cells while benchmarks were installed for superficial displacement measurements. The aim of the study is to investigate possible causes of instability considering different probability distributions of the strength of discontinuities and anchor bond strength by applying different optimization techniques for finding the critical failure surface. Even though the deterministic safety factor value is close to unity, the probability of failure is governed by variability of shear strength of anisotropic planes and optimization method used for locating the critical sliding surface. The Cuckoo search technique produces higher failure probabilities compared to the others. Depending on the assigned statistical distribution of input parameters, various performance functions of the factor of safety are obtained. The probability of failure is insensitive to the variation of bond strength. Different sampling techniques should yield similar results considering that the sufficient number of safety factor evaluations is chosen to achieve converged solution.

Failure Characteristics of Foundation System Reinforced with Stone Columns (쇄석말뚝으로 보강된 기초시스템의 파괴 거동)

  • Shin, Bang Woong;Bae, Woo Seok
    • Journal of the Korean GEO-environmental Society
    • /
    • v.2 no.3
    • /
    • pp.71-80
    • /
    • 2001
  • The quantitative analysis of bearing capacity with stone column-mat is not ease because the bearing capacity of stone column is affected by so many parameters. The bearing capacity of stone column is mainly governed by horizontal resistance along the interface with soil. Also, this foundation system is affected by geometric factors such as column spacing, embedment ratio and failure surface inclination. Therefore, in this study, critical length and the effect of failure surface inclination was studied with single and group end bearing stone columns by loading tests. Results of model tests are compared to the present theoretical methods and are examined with FEM analysis.

  • PDF

ADHESION STUDIES OF MAGNETRON-SPUTTERED COPPER FILMS ON INCONEL SUBSTRATES

  • Lee, G.H.;Kwon, S.C.;Lee, S.Y.
    • Journal of the Korean institute of surface engineering
    • /
    • v.32 no.3
    • /
    • pp.410-415
    • /
    • 1999
  • The adhesion strength of sputtered copper films to Inconel substrates has been studied using the scratch test. The effects of substrate treatments before deposition such as chemical or ion bombardment etching were investigated by means of a mean critical load derived from a Weibull-like statistical analysis. It was found that the mean critical load was very weak unless the amorphous layer produced by mechanical polishing on the substrate surface was eliminated. Chemical etching in a nitric-hydrochloric acid bath was shown to have practically no effect on the enhancement of the adhesion. In contrast, the addition in this bath of nickel and copper sulphates allowed removal of the amorphous layer and an increase in the values of the mean critical load. However, it was observed that excessive chemical etching could cancel out the mean critical load enhancement. The results obtained in the case of ion bombardment etching pretreatments could be far higher than those obtained with chemical etching. Moreover, for a sufficiently long period of ion bombardment etching, the adhesion strength was so high that it was impossible to observe evidence of an adhesion failure.

  • PDF

A Constrained Simplex Method for Slope Stability Analysis (사면안정해석에 대한 Constrained Simplex Method 적용)

  • Hwang, Jea An;Lee, Sang Duk;Jeon, Mong Gag;Koo, Ja Kap
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.13 no.4
    • /
    • pp.209-215
    • /
    • 1993
  • A stability analysis program(CSLOP) which can obtain the factor of safety and the critical failure surface at the same time is developed from this study. In order to improve existing slice methods, the general slice method of Gussmann is applied to compute the factor of safety, and the constrained simplex algorithm proposed by Box is applied to systematically locate the critical failure surface in slopes. The proposed method is applied to two examples of circular and noncircular slope stability and the results are compared to previously published solutions. Constrained simplex method is recommended to improve slope stability programs which provide for an automatic search of the critical failure mechanisms.

  • PDF

A Study on the Fracture Toughness of Glass-Carbon Hybrid Composites (유리-탄소 하이브리드 복합재료의 파괴인성에 관한 연구)

  • No, Ho-Seop;Go, Seong-Wi
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.28 no.3
    • /
    • pp.295-305
    • /
    • 1992
  • The critical strain energy release rate and the failure mechanisms of glass-carbon epoxy resin hybrid composites are investigated in the temperature range of the ambient temperature to 8$0^{\circ}C$. The direction of laminates and the volume fraction are [(+45, -45, 0, 0) sub(2) ] sub(s), 50%, respectively. The major failure mechanisms of these composites are studied using the scanning electron microscope for the fracture surface. Results are summarized as follows: 1) The critical strain energy release rate shows a maximum at ambient temperature and it tends to decrease as temperature goes up. 2) The critical strain energy release rate increases as the content of glass increases, and especially shows dramatic increase for the high glass fiber content specimens. 3) Major failure mechanisms can be classfied such as localized shear yielding, fiber-matrix debonding, matrix micro-cracking, and fiber pull-out and/or delamination.

  • PDF