• Title/Summary/Keyword: critical current density

Search Result 587, Processing Time 0.021 seconds

Correlation of the 2223 percentage before the first intermediate pressing and the transport property of the fully processed Bi-2223/Ag tapes

  • Jiang, C.H.;Yoo, J.M.;Ko, J.W.;Kim, Y.K.;Chung, H.S.
    • Progress in Superconductivity
    • /
    • v.4 no.1
    • /
    • pp.94-98
    • /
    • 2002
  • Two kinds of multifilament Bi-2223/Ag tapes, which are different in the precursor calcination temperatures, were heat treated for different time (12, 20, 30, 50, 70, or 100 h) firstly to obtain varied B2223 contents, and then followed by the same pressing and sintering cycles. The relation of the 2223 phase contents after the first sintering and the transport property of the fully processed tapes was studied. The results show that 75-80% 2223 phase formed in tapes before the first cold pressing is beneficial to get a high $I_{c}$ in the final tapes. Compensating the total heat treatment time of the tapes first sintered for 20 h to the same length as that first sintered for 50 h in the subsequent sintering stages, different $I_{c}$ enhancements were observed in these two tapes. No improvement on $I_{c}$ was found in the tape made from the powder calcined at higher temperature, whereas for the tape prepared with the lower temperature calcined powder, the $I_{c}$ was increased to the same level as that first sintered for 50 h. The 2223 contents before the intermediate mechanical work is related to the residual reactants, especially to the liquid phase, which is of vital importance to the phase conversion and healing microcracks, meanwhile, to the size and distribution of the non-superconducting secondary phases. The lower temperature calcined powder resulted in slow formation of 2223 phase, but also provided more reactants and liquid phase for the further phase conversion, as a consequence, for the Improvement of $I_{c}$. c/.

  • PDF

Molybdenum-Based Electrocatalysts for Direct Alcohol Fuel Cells: A Critical Review

  • Gaurav Kumar Yogesh;Rungsima Yeetsorn;Waritnan Wanchan;Michael Fowler;Kamlesh Yadav;Pankaj Koinkar
    • Journal of Electrochemical Science and Technology
    • /
    • v.15 no.1
    • /
    • pp.67-95
    • /
    • 2024
  • Direct alcohol fuel cells (DAFCs) have gained much attention as promising energy conversion devices due to their ability to utilize alcohol as a fuel source. In this regard, Molybdenum-based electrocatalysts (Mo-ECs) have emerged as a substitution for expensive Pt and Ru-based co-catalyst electrode materials in DAFCs, owing to their unique electrochemical properties useful for alcohol oxidation. The catalytic activity of Mo-ECs displays an increase in alcohol oxidation current density by several folds to 1000-2000 mA mgPt-1, compared to commercial Pt and PtRu catalysts of 10-100 mA mgPt-1. In addition, the methanol oxidation peak and onset potential have been significantly reduced by 100-200 mV and 0.5-0.6 V, respectively. The performance of Mo-ECs in both acidic and alkaline media has shown the potential to significantly reduce the Pt loading. This review aims to provide a comprehensive overview of the bifunctional mechanism involved in the oxidation of alcohols and factors affecting the electrocatalytic oxidation of alcohol, such as synthesis method, structural properties, and catalytic support materials. Furthermore, the challenges and prospects of Mo-ECs for DAFCs anode materials are discussed. This in-depth review serves as valuable insight toward enhancing the performance and efficiency of DAFC by employing Mo-ECs.

A Techno-Economic Study of Commercial Electrochemical CO2 Reduction into Diesel Fuel and Formic Acid

  • Mustafa, Azeem;Lougou, Bachirou Guene;Shuai, Yong;Razzaq, Samia;Wang, Zhijiang;Shagdar, Enkhbayar;Zhao, Jiupeng
    • Journal of Electrochemical Science and Technology
    • /
    • v.13 no.1
    • /
    • pp.148-158
    • /
    • 2022
  • The electrochemical CO2 reduction (ECR) to produce value-added fuels and chemicals using clean energy sources (like solar and wind) is a promising technology to neutralize the carbon cycle and reproduce the fuels. Presently, the ECR has been the most attractive route to produce carbon-building blocks that have growing global production and high market demand. The electrochemical CO2 reduction could be extensively implemented if it produces valuable products at those costs which are financially competitive with the present market prices. Herein, the electrochemical conversion of CO2 obtained from flue gases of a power plant to produce diesel and formic acid using a consistent techno-economic approach is presented. The first scenario analyzed the production of diesel fuel which was formed through Fischer-Tropsch processing of CO (obtained through electroreduction of CO2) and hydrogen, while in the second scenario, direct electrochemical CO2 reduction to formic acid was considered. As per the base case assumptions extracted from the previous outstanding research studies, both processes weren't competitive with the existing fuel prices, indicating that high electrochemical (EC) cell capital cost was the main limiting component. The diesel fuel production was predicted as the best route for the cost-effective production of fuels under conceivable optimistic case assumptions, and the formic acid was found to be costly in terms of stored energy contents and has a facile production mechanism at those costs which are financially competitive with its bulk market price. In both processes, the liquid product cost was greatly affected by the parameters affecting the EC cell capital expenses, such as cost concerning the electrode area, faradaic efficiency, and current density.

Synthesis of YBa2Cu3O7-y Powder using a Powder Reaction Method and Fabrication of the Bulk Superconductors (분말 반응법에 의한 YBa2Cu3O7-y 합성과 벌크 초전도체의 제조)

  • Jeon, Young Ju;Park, Seung Yeon;You, Byung Youn;Park, Soon-Dong;Kim, Chan-Joong
    • Journal of Powder Materials
    • /
    • v.20 no.2
    • /
    • pp.142-147
    • /
    • 2013
  • $YBa_2Cu_3O_{7-y}$ (Y123) powders for the fabrication of bulk superconductors were synthesized by the powder reaction method using $Y_2O_3$ (99.9% purity), $BaCO_3$ (99.75%) and CuO (99.9%) powders. The raw powders were weighed to the cation ratio of Y:Ba:Cu=1:2:3, mixed and calcined at $880^{\circ}C-930^{\circ}C$ in air with intermediate repeated crushing steps. It was found that the formation of Y123 powder was more sensitive to reaction temperature than reaction time. The calcined Y123 powder and a mixture of (Y123 + 0.25 mole $Y_2O_3$ + 1 wt.% $CeO_2$, $Y_{1.5}Ba_2Cu_3O_x$ (Y1.5)) were used as raw powders for the fabrication of poly-grain or single grain superconductors. The superconducting transition temperature ($T_{c,onset}$) of the sintered Y123 sample was 91 K and the transition width was as large as 11 K, whereas the $T_{c,onset}$ of the melt-grown Y1.5 sample was 90.5 K and the transition width was 3.5 K. The critical current density ($J_c$) at 77 K and 0 T of the sintered Y123 was 700 $A/cm^2$, whereas the $J_c$ of the top-seeded melt growth (TSMG) processed Y1.5 sample was $3.2{\times}10^4\;A/cm^2$. The magnetic flux density (H) at 77 K of the TSMG-processed Y123 and Y1.5 sample showed the 0.53 kG and 2.45 kG, respectively, which are 15% and 71% of the applied magnetic field of 3.5 kG. The high H value of the TSMG-processed Y1.5 sample is attributed to the formation of the larger superconducting grain with fine Y211 dispersion.

Honeycomb-type Single Chamber SOFC Running on Methane-Air Mixture (Methane-Air 혼합 Gas에서 구동하는 하니컴 형태의 SC-SOFC)

  • Park Byung-Tak;Yoon Sung Pil;Kim Hyun Jae;Nam Suk Woo;Han Jonghee;Lim Tae-Hoon;Hong Seong-Ahn;Lee Dokyol
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.306-309
    • /
    • 2005
  • One of the most critical issues in sol id oxide fuel cell (SOFC)running on hydrocarbon fuels is the risk of carbon formation from the fuel gas. The simple method to reduce the risk of carbon formation from the reactions is to add steam to the fuel stream, leading to the carbon gasification react ion. However, the addition of steam to fuel is not appropriate for the auxiliary power unit (APU) and potable power generation (PPG) systems due to an increase of complexity and bulkiness. In this regard, many researchers have focused on so-called 'direct methane' operation of SOFC, which works with dry methane without coking. However, coking can be suppressed only by the operation with a high current density, which may be a drawback especially for the APU and PPG systems. The single chamber fuel cell (SC-SOFC) is a novel simplification of the conventional SOFC into which a premixed fuel/air mixture is introduced. It relies on the selectivity of the anode and cathode catalysts to generate a chemical potential gradient across the cell. Moreover it allows compact and seal-free stack design. In this study, we fabricated honeycomb type mixed-gas fuel cell (MGFC) which has advantages of stacking to the axial direction and increasing volume power density. Honeycomb-structured SOFC with four channels was prepared by dry pressing method. Two alternative channels were coated with electrolyte and cathode slurry in order to make cathodic reaction sites. We will discuss that the anode supported honeycomb type cell running on mixed gas condition.

  • PDF

Fabrication of Gd1.5Ba2Cu3O7-y Bulk Superconductors from the Powder Synthesized by a Solid-State Reaction Method (고상반응법으로 합성한 분말로부터 Gd1.5Ba2Cu3O7-y 벌크 초전도체의 제조)

  • Kim, Yong Ju;Park, Seung Yeon;You, Byung Youn;Park, Soon-Dong;Kim, Chan-Joong
    • Korean Journal of Materials Research
    • /
    • v.23 no.6
    • /
    • pp.309-315
    • /
    • 2013
  • $GdBa_2Cu_3O_{7-y}$(Gd123) powders were synthesized by the solid-state reaction method using $Gd_2O_3$ (99.9% purity), $BaCO_3$ (99.75%) and CuO (99.9%) powders. The synthesized Gd123 powder and the Gd123 powder with $Gd_2O_3$ addition ($Gd_{1.5}Ba_2Cu_3O_{7-y}$(Gd1.5)) were used as raw powders for the fabrication of Gd123 bulk superconductors. The Gd123 and Gd1.5 bulk superconductors were fabricated by sintering or a top-seeded melt growth (TSMG) process. The superconducting transition temperature ($T_{c,onset}$) of the sintered Gd123 was 93 K and the transition width was as large as 20 K. The $T_{c,onset}$ of the TSMG processed Gd123 was 82 K and the transition width was also as large as 12 K. The critical current density ($J_c$) at 77 K and 0 T of the sintered Gd123 and TSMG processed Gd123 were as low as a few hundreds A/$cm^2$. The addition of 0.25 mole $Gd_2O_3$ and 1 wt.% $CeO_2$ to Gd123 enhanced the $T_c$, $J_c$ and magnetic flux density (H) of the TSMG processed Gd123 sample owing to the formation of the superconducting phase with high flux pinning capability. The $T_c$ of the TSMG processed Gd1.5 was 92 K and the transition width was 1 K. The $J_cs$ at 77 K (0 T and 2 T) were $3.2{\times}10^4\;A/cm^2$ and $2.5{\times}10^4\;A/cm^2$, respectively. The H at 77 K of the TSMG-processed Gd1.5 was 1.96 kG, which is 54% of the applied magnetic field (3.45 kG).

Superconducting Properties of Large Single Grain Gd1.5Ba2Cu3O7-y Bulk Superconductors (대면적 단결정 Gd1.5Ba2Cu3O7-y 벌크 초전도체의 초전도 특성)

  • Kim, Chan-Joong;Park, Seung Yeon;Kim, Kwang-Mo;Park, Soon-Dong;Jun, Byung-Hyuk
    • Korean Journal of Materials Research
    • /
    • v.22 no.11
    • /
    • pp.569-574
    • /
    • 2012
  • Large single grain $Gd_{1.5}Ba_2Cu_3O_{7-y}$ (Gd1.5) bulk superconductors were fabricated by a top-seeded melt growth (TSMG) process using an $NdBa_2Cu_3O_{7-y}$ seed. The seeded Gd1.5 powder compacts with a diameter of 50 mm were subjected to the heating cycles of a TSMG process. After the TSMG process, the diameter of the single grain Gd1.5 compact was reduced to 43 mm owing to the volume contraction during the heat treatment. The superconducting transition temperature ($T_c$) of the top surface of the single grain Gd1.5 sample was as high as 93.5 K. The critical current densities ($J_cs$) at 77 K and 1T and 1.5 T were in ranges of 25,200-43,900 $A/cm^2$ and 10,000-23,000 $A/cm^2$, respectively. The maximum attractive force at 77 K of the sample field-cooled using an Nd-B-Fe permanent magnet (surface magnetic field of 0. 527 T) was 108.3 N; the maximum repulsive force of the zero field-cooled sample was 262 N. The magnetic flux density of the sample field-cooled at 77 K was 0.311T, which is approximately 85% of the applied magnetic field of 0.375 T. Microstructure investigation showed that many $Gd_2BaCuO_5$ (Gd211) particles of a few ${\mu}m$ in size, which are flux pinning sites of Gd123, were trapped within the $GdBa_2Cu_3O_{7-y}$ (Gd123) grain; unreacted $Ba_3Cu_5O_8$ liquid and Gd211 particles were present near the edge regions of the single grain Gd1.5 bulk compact.

Evaluation of Water Quality Change by Membrane Damage to Pretreatment Process on SDI in Wastewater Reuse (하수재이용에서 전처리 막 손상에 의한 수질변화가 SDI에 미치는 영향평가)

  • Lee, Min Soo;Seo, Dongjoo;Lee, Yong-Soo;Chung, Kun Yong
    • Membrane Journal
    • /
    • v.32 no.4
    • /
    • pp.253-263
    • /
    • 2022
  • This study suggests a guideline for designing unit process of wastewater reuse in terms of a maintenance of the process based on critical parameters to draw a high quality performance of RO unit. Defining the parameters was done by applying membrane integrity test (MIT) in pretreatment process utilizing lab-scale MF. SDI is utilized for judging whether permeate is suitable to RO unit. However, result said TOC concentration matching with particle count analysis is better for judging the permeate condition. When membrane test pressure (Ptest) was measured to derive log removal value in PDT, virgin state of membrane fiber was used to measure dynamic contact angle utilizing surface tension of the membrane fiber. Actually, foulant affects to the state of membrane surface, and it decreases the Ptest value along with time elapsed. Consequently, LRVDIT is also affected by Ptest value. Thus, sensitivity of direct integrity test descends with result of Ptest value change, so Ptest value should be considered not the virgin state of the membrane but its current state. Overall, this study focuses on defining design parameters suitable to MF pretreatment for RO process in wastewater reuse by assessing its impact. Therefore, utilities can acknowledge that the membrane surface condition must be considered when users conduct the direct integrity test so that Ptest and other relative parameter used to calculate LRVDIT are adequately measured.

A Preliminary Study on Micro-earthquakes Occurred from 2010 to 2017 in Busan, Korea (2010-2017년 부산지역의 미소 지진 예비 탐색)

  • Yoon, Soheon;Han, Jongwon;Won, Deokhee;Kang, Su Young;Ryoo, Yong Gyu;Kim, Kwang-Hee
    • Journal of the Korean earth science society
    • /
    • v.40 no.3
    • /
    • pp.272-282
    • /
    • 2019
  • Although the knowledge of current seismicity is a critical information for making and implementing effective earthquake-related policy, the detailed seismicity information of the metropolitan areas with high-population density has been largely underestimated due to the high-level of cultural noise and small earthquake magnitude. This study presents 12 earthquakes including 2 earthquakes previously known and 10 additional earthquakes occurred from 2010 to 2017 in Busan, but they were unreported by the Korea Meteorological Administration. Matched filter technique is used to detect micro-earthquakes. Although the epicenters of micro-earthquakes though present a distinguished linearity, a correlation with faults in the area is unknown. A repeated micro-seismicity suggests that there are subsurface structures responsible for observed events. If large earthquakes occur along the fault in Busan, they may cause catastrophic natural disasters. Given the fact that the recent earthquakes did not accompany any surface signatures, it is highly recommended that the current micro-seismicity be investigated, and updated seismicity information be incorporated into establishing active fault maps in Korea.

Numerical Simulation of Ocean - Ice Shelf Interaction: Water Mass Circulation in the Terra Nova Bay, Antarctica (해양-빙붕 상호작용을 고려한 남극 테라노바 만에서 수괴 형성과 순환의 수치 시뮬레이션)

  • Taekyun, Kim;Emilia Kyung, Jin;Ji Sung, Na;Choon Ki, Lee;Won Sang, Lee;Jae-Hong, Moon
    • Ocean and Polar Research
    • /
    • v.44 no.4
    • /
    • pp.269-285
    • /
    • 2022
  • The interaction between ocean and ice shelf is a critical physical process in relation to water mass transformations and ice shelf melting/freezing at the ocean-ice interface. However, it remains challenging to thoroughly understand the process due to a lack of observational data with respect to ice shelf cavities. This is the first study to simulate the variability and circulation of water mass both overlying the continental shelf and underneath an ice shelf and an ice tongue in the Terra Nova Bay (TNB), East Antarctica. To explore the properties of water mass and circulation patterns in the TNB and the corresponding effects on sub ice shelf basal melting, we explicitly incorporate the dynamic-thermodynamic processes acting on the ice shelf in the Regional Ocean Modeling System. The simulated water mass formation and circulation in the TNB region agree well with previous studies. The model results show that the TNB circulation is dominated by the geostrophic currents driven by lateral density gradients induced by the releasing of brine or freshwater at the polynya of the TNB. Meanwhile, the circulation dynamics in the cavity under the Nansen Ice shelf (NIS) are different from those in the TNB. The gravity-driven bottom current induced by High Salinity Shelf Water (HSSW) formed at the TNB polynya flows towards the grounding line, and the buoyance-driven flow associated with glacial meltwater generated by the HSSW emerges from the cavity along the ice base. Both current systems compose the thermohaline overturning circulation in the NIS cavity. This study estimates the NIS basal melting rate to be 0.98 m/a, which is comparable to the previously observed melt rate. However, the melting rate shows a significant variation in space and time.