DOI QR코드

DOI QR Code

Synthesis of YBa2Cu3O7-y Powder using a Powder Reaction Method and Fabrication of the Bulk Superconductors

분말 반응법에 의한 YBa2Cu3O7-y 합성과 벌크 초전도체의 제조

  • Jeon, Young Ju (Neutron Science Division, Korea Atomic Energy Research Institute) ;
  • Park, Seung Yeon (Neutron Science Division, Korea Atomic Energy Research Institute) ;
  • You, Byung Youn (Neutron Science Division, Korea Atomic Energy Research Institute) ;
  • Park, Soon-Dong (Neutron Science Division, Korea Atomic Energy Research Institute) ;
  • Kim, Chan-Joong (Neutron Science Division, Korea Atomic Energy Research Institute)
  • 전영주 (한국원자력연구원 중성자과학연구부) ;
  • 박승연 (한국원자력연구원 중성자과학연구부) ;
  • 유병윤 (한국원자력연구원 중성자과학연구부) ;
  • 박순동 (한국원자력연구원 중성자과학연구부) ;
  • 김찬중 (한국원자력연구원 중성자과학연구부)
  • Received : 2013.04.03
  • Accepted : 2013.04.15
  • Published : 2013.04.28

Abstract

$YBa_2Cu_3O_{7-y}$ (Y123) powders for the fabrication of bulk superconductors were synthesized by the powder reaction method using $Y_2O_3$ (99.9% purity), $BaCO_3$ (99.75%) and CuO (99.9%) powders. The raw powders were weighed to the cation ratio of Y:Ba:Cu=1:2:3, mixed and calcined at $880^{\circ}C-930^{\circ}C$ in air with intermediate repeated crushing steps. It was found that the formation of Y123 powder was more sensitive to reaction temperature than reaction time. The calcined Y123 powder and a mixture of (Y123 + 0.25 mole $Y_2O_3$ + 1 wt.% $CeO_2$, $Y_{1.5}Ba_2Cu_3O_x$ (Y1.5)) were used as raw powders for the fabrication of poly-grain or single grain superconductors. The superconducting transition temperature ($T_{c,onset}$) of the sintered Y123 sample was 91 K and the transition width was as large as 11 K, whereas the $T_{c,onset}$ of the melt-grown Y1.5 sample was 90.5 K and the transition width was 3.5 K. The critical current density ($J_c$) at 77 K and 0 T of the sintered Y123 was 700 $A/cm^2$, whereas the $J_c$ of the top-seeded melt growth (TSMG) processed Y1.5 sample was $3.2{\times}10^4\;A/cm^2$. The magnetic flux density (H) at 77 K of the TSMG-processed Y123 and Y1.5 sample showed the 0.53 kG and 2.45 kG, respectively, which are 15% and 71% of the applied magnetic field of 3.5 kG. The high H value of the TSMG-processed Y1.5 sample is attributed to the formation of the larger superconducting grain with fine Y211 dispersion.

Keywords

References

  1. M. K. Wu, J. R. Ashburn, C. J. Thorng, P. H. Hor, R. L. Meng, L. Gao, Z. J. Huang, Q. Wang and C. W. Chu: Phys. Rev. Lett., 58 (1987) 908 https://doi.org/10.1103/PhysRevLett.58.908
  2. M. Murakami, M. Morita, K. Doi and K. Miyamoto: Jpn. J. Appl. Phys., 28 (1989) 1189. https://doi.org/10.1143/JJAP.28.1189
  3. K. Matsunaga, M. Tomita, N. Yamachi, K. Iida, J. Yoshioka and M. Murakami: Supercond. Sci. Technol., 15 (2002) 842. https://doi.org/10.1088/0953-2048/15/5/341
  4. K. Nagashima, T. Higuchi, J. Sok, S. I. Yoo, H. Fujimoto and M. Murakami: Cryogenics, 37 (1997) 577. https://doi.org/10.1016/S0011-2275(97)00058-1
  5. H. Hayashi, K. Tsutsumi, N. Saho, N. Nishizima and K. Asano: Physica C, 392-396 (2003) 745. https://doi.org/10.1016/S0921-4534(03)01214-0
  6. C.-J. Kim and G.-W. Hong: Supercond. Sci. Technol., 12 (1999) R27. https://doi.org/10.1088/0953-2048/12/3/001
  7. H. Salamati, A. Babaei-Brojeny and M. Safa: Supercond. Sci. Technol., 14 (2001) 816. https://doi.org/10.1088/0953-2048/14/10/302
  8. T. Haugan, P. N. Barnes, R. Wheeler, F. Meisenkothen and M. Sumption: Nature, 430 (2004) 867. https://doi.org/10.1038/nature02792
  9. L. Zhou, P. Zhang, P. Ji, K. Wang, J. Wang and X. Wu: Supercond. Sci. Technol., 3 (1990) 490. https://doi.org/10.1088/0953-2048/3/10/002
  10. S. R. Foltyn, L. Civale, J. L. MacManus-Driscoll, Q. X. Jia, B. Maiorov, H. Wang and M. Maley: Nature Mater., 6 (2007) 631. https://doi.org/10.1038/nmat1989
  11. E. Dantsker S. Tanaka and J. Clarke, Appl. Phys. Lett., 70 (1997) 2037. https://doi.org/10.1063/1.118776
  12. Y. A. Jee, C.-J. Kim, T.-H. Sung and G.-W. Hong: Supercond. Sci. Technol., 13 (2000) 195. https://doi.org/10.1088/0953-2048/13/2/314
  13. C.-J. Kim, H.-Jin Kim, J.-W. Sun, B. K. Ji, H.-S. Kim, Jinho Joo, B.-H. Jun, C.-H. Jung, S.-D. Park, H.-W. Park and G.-W. Hong: Physica C, 386 (2003) 327. https://doi.org/10.1016/S0921-4534(02)02151-2
  14. C.-J. Kim, H.-J. Kim, J.-H. Joo, G.-W. Hong, S.-C. Han, Y.-H. Han, T.-H. Sung and S.-J. Kim: Physica C, 336 (2000) 233. https://doi.org/10.1016/S0921-4534(00)00292-6
  15. K. Kishio, J. Shimoyama, T. Hasegawa, K. Kitazawa and K. Fueki: Jpn. J. Appl. Phys., 26 (1987) L1228. https://doi.org/10.1143/JJAP.26.L1228
  16. C.-J. Kim, K.-B. Kim, I.-H. Kuk, G.-W. Hong, Y.-S. Lee and H.-S. Park: Supercond. Sci. Technol., 10 (1997) 947. https://doi.org/10.1088/0953-2048/10/12/019
  17. C. P. Bean: Rev. Mod. Phys., 36 (1964) 446.
  18. C.-J. Kim, H.-W. Park, K.-B. Kim and G.-W. Hong: Supercond. Sci. Technol., 8 (1995) 652. https://doi.org/10.1088/0953-2048/8/8/009
  19. M. Murakami: Mod. Phys. Lett., B, 4 (1990) 163. https://doi.org/10.1142/S0217984990000234