• 제목/요약/키워드: critical coefficient

검색결과 908건 처리시간 0.031초

분리 상태를 고려한 탄성마찰시스템의 임계 쐐기 계수 (Critical Wedging Coefficient in Frictional Elastic System Considering Separation State)

  • 김상규;장용훈
    • Tribology and Lubricants
    • /
    • 제36권6호
    • /
    • pp.324-331
    • /
    • 2020
  • Wedging in a frictional elastic system is defined if the state of stick exists after the external loading on the system is removed. This paper presents a method to determine the critical coefficient of wedging for an elastic frictional system by considering the separation state. Wedging is always possible if the coefficient of friction exceeds a critical value known as the critical wedging coefficient. This method requires two concepts: a necessary and sufficient condition for wedging, which can be interpreted as positive spanning sets of constraint vectors existing in the wedged system, and the minimal positive basis that enables a minimum wedging coefficient. The algorithm based on the positive spanning concept is repeatedly executed after eliminating nodes from the contact stiffness matrix, for which the separation states are impending. The simulation results show that once a node enters the separation state, it never returns to the contact state again and the critical wedging coefficient reduces during repeated algorithm execution. The benefit of this method is that the computation time permits handling models with large numbers of contact nodes. The algorithm can also numerically find the critical wedging coefficient, thereby contributing to fastening and assembly performance improvements in mechanical systems.

임계노즐 유동에 미치는 노즐 곡률의 영향 (Effect of the Nozzle Curvature on Critical Flows)

  • 김재형;김희동;박경암
    • 유체기계공업학회:학술대회논문집
    • /
    • 유체기계공업학회 2002년도 유체기계 연구개발 발표회 논문집
    • /
    • pp.331-336
    • /
    • 2002
  • Recently the critical nozzles with small diameter are being extensively used to measure mass flow in a variety of industrial fields and these have different configurations depending on operation condition and working gas. The curvature radius of the critical nozzle throat is one of the most important configuration factors promising a high reliability of the critical nozzle. In the present study, computations using the axisymmetric, compressible, Navier-Stokes equations are carried out to investigate the effect of the nozzle curvature on critical flows. The diameter of the critical nozzle employed is D=0.3mm and the radius of curvature of the critical nozzle throat is varied in the range from 1D to 3D. It is found that the discharge coefficient is very sensitive to the curvature radius(R) of critical nozzle, leading to the peak discharge coefficient at R = 2.0D and 2.5D, and that the critical pressure ratio increases with the curvature radius.

  • PDF

A Numerical Study on the Laminar Flow Field and Heat Transfer Coefficient Distribution for Supercritical Water in a Tube

  • Lee Sang-Ho
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • 제13권4호
    • /
    • pp.206-216
    • /
    • 2005
  • Numerical analysis has been carried out to investigate laminar convective heat transfer at zero gravity in a tube for supercritical water near the thermodynamic critical point. Fluid flow and heat transfer are strongly coupled due to large variation of thermodynamic and transport properties such as density, specific heat, viscosity, and thermal conductivity near the critical point. Heat transfer characteristics in the developing region of the tube show transition behavior between liquid-like and gas-like phases with a peak in heat transfer coefficient distribution near the pseudo critical point. The peak of the heat transfer coefficient depends on pressure and wall heat flux rather than inlet temperature and Reynolds number. Results of the modeling provide convective heat transfer characteristics including velocity vectors, temperature, and the properties as well as the heat transfer coefficient. The effect of proximity on the critical point is considered and a heat transfer correlation is suggested for the peak of Nusselt number in the tube.

실제기체 효과를 고려한 수소기체의 임계노즐 유동에 관한 연구 (Study on the Critical Nozzle Flow of Hydrogen Gas with Real Gas Effects)

  • 김재형;김희동
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2007년도 춘계학술대회B
    • /
    • pp.3003-3008
    • /
    • 2007
  • Critical nozzle has been frequently employed to measure the flow rate of various gases, but hydrogen gas, especially being at high-pressure condition, was not nearly dealt with the critical nozzle due to treatment danger. According to a few experimental data obtained recently, it was reported that the discharge coefficient of hydrogen gas through the critical nozzle exceeds unity in a specific range of Reynolds number. No detailed explanation on such an unreasonable value was made, but it was vaguely inferred as real gas effects. For the purpose of practical use of high-pressure hydrogen gas, systematic research is required to clarify the critical nozzle flow of high-pressure hydrogen gas. In the present study, a computational fluid dynamics(CFD) method has been applied to predict the critical nozzle flow of high-pressure hydrogen gas. Redlich-Kwong equation of state that take account for the forces and volume of molecules of hydrogen gas were incorporated into the axisymmetric, compressible Navier-Stokes equations. A fully implicit finite volume scheme was used to numerically solve the governing equations. The computational results were validated with some experimental data available. The results show that the coefficient of discharge coefficient is mainly influenced by the compressibility factor and the specific heat ratio, which appear more remarkable as the inlet total pressure of hydrogen gas increases.

  • PDF

강우침투에 따른 화강풍화토 사면의 얕은파괴 특성 (Shallow Failure Characteristics of Weathered Granite Soil Slope in accordance with the Rainfall Infiltration)

  • 김선학
    • 한국산학기술학회논문지
    • /
    • 제10권10호
    • /
    • pp.2810-2818
    • /
    • 2009
  • 본 연구는 화강풍화토로 구성된 절토사면에서 얕은파괴의 특성을 규명하고자 우리나라의 강우특성에 따른 한계투수계수를 산정하고, 국내에 분포하는 화강풍화토의 대표적 물성을 기준으로 절토사면의 파괴면까지의 수평거리, 사면의 경사각, 사면높이 그리고 강우로 인한 포화깊이 등에 따른 안정해석을 수행하여 그 결과를 분석하였다. 한계투수계수를 분석한 결과 국내의 지역별 강우특성을 고려한 최대 한계투수계수가 $7.16{\times}10^{-4}cm/sec$의 값으로 나타났다. 최대 한계투수계수 이하의 값을 갖는 국내의 화강풍화토로 구성된 절토사면에서 한계강우강도 이하의 강우가 최소 강우지속시간보다 오랫동안 지속될 때에는 포화깊이에 따른 얕은파괴의 검토가 고려되어져야 할 것으로 판단되었다. 또한, 가상파괴면이 발생하는 수평거리, 포화깊이, 강도정수 변화에 따른 사면안전율의 변화관계를 통해 절토사면의 얕은파괴 특성을 파악 할 수 있었다.

Determination of Critical Generator Group Using Accelerating Power and Synchronizing Power Coefficient in the Transient Energy Function Method

  • Chun, Yeong-Han
    • Journal of Electrical Engineering and Technology
    • /
    • 제6권2호
    • /
    • pp.161-166
    • /
    • 2011
  • This paper proposes an algorithm for determining critical generator lists using accelerating power and synchronizing power coefficient (SPC), and critical generator group (CGG) from CGG candidates, which is a combination of critical generators. The accurate determination of CGG provides a more accurate energy margin while providing system operator with information of possible unstable generator group. Classical transient energy function (TEF) method selects the critical generators with big corrected kinetic energy of each generator at the moment of fault removal. However, the generator with small acceleration after fault, that is, the generator with small corrected kinetic energy, is also likely to belong to CGG if the generator has small synchronizing power. The proposed algorithm has been verified to be effective compared with the classical TEF method. We utilized the power system of Korean Electric Power Corporation(KEPCO) as a test system.

송출공의 회전이 송출계수와 압력계수에 미치는 영향 (The Effect of Rotation of Discharge Hole on the Discharge Coefficient and Pressure Coefficient)

  • 하경표;구남희;고상근
    • 대한기계학회논문집B
    • /
    • 제27권7호
    • /
    • pp.948-955
    • /
    • 2003
  • Pressure coefficient in rotating discharge hole was measured to gain insight into the influence of rotation to the discharge characteristics of rotating discharge hole. Pressure measurements were done by the telemetry system that had been developed by the authors. The telemetry system measures static pressure using piezoresistive pressure sensors. Pressure coefficients in rotating discharge hole were measured in longitudinal direction and circumferential direction with various rotating speed and 3 pressure ratios. From the results, the pressure coefficient, and therefore the discharge coefficient, is known to decrease with the increase of Ro number owing to the increase of flow approaching angle to the discharge hole inlet. However, there exists critical Ro number where the decrease rate of discharge coefficient with the increase of Ro number changes abruptly; flow separation occurs from the discharge hole exit at this critical Ro number. Critical Ro number increases with the increase of length-to-diameter ratio, but the increase is small where the length-to-diameter ratio is higher than 3. The decrease rate of discharge coefficient with the increase of Ro number depends on the pressure recovery at the discharge hole, and the rate is different from each length-to-diameter ratio; it has tendency that the short discharge hole shows higher decrease rate of discharge coefficient.

초임계상태의 물에 대한 관 내 층류유동장 및 열전달계수 분포특성에 관한 연구 (A Study on the Laminar Flow Field and Heat Transfer Coefficient Distribution for Supercritical Water in a Tube)

  • 이상호
    • 설비공학논문집
    • /
    • 제15권9호
    • /
    • pp.768-778
    • /
    • 2003
  • Numerical analysis has been carried out to investigate laminar convective heat transfer in a tube for supercritical water near the thermodynamic critical point. Fluid flow and heat transfer are strongly coupled due to large variations of thermodynamic and transport properties such as density, specific heat, viscosity, and thermal conductivity near the critical point. Heat transfer characteristics in the developing region of the tube show transition behavior between liquid-like and gas-like phases with a peak in heat transfer coefficient distribution near the pseudocritical point. The peak of the heat transfer coefficient depends on pressure and wall heat flux rather than inlet temperature and Reynolds number, Results of the modeling provide convective heat transfer characteristics including velocity vectors, temperature, and the properties as well as the heat transfer coefficient. The effect of proximity to the critical point is considered and a heat transfer correlation is suggested for the peak of Nusselt number in the tube.

축류압축기 익렬에서의 역류 유동 특성에 대한 수치적 연구 (Numerical Study on Reverse Flow Charcteristics in an Axial Compressor Cascade)

  • 손창현
    • 대한기계학회논문집B
    • /
    • 제24권5호
    • /
    • pp.615-622
    • /
    • 2000
  • Numerical simulation is performed with Denton's code to get pressure loss coefficients in wide range of reverse flow incidence(from -90 degree to +85 degree) for an axial compressor cascade. As a results, it is found that the pressure loss coefficient is increased with incidence and there exist critical incidence which corresponds to the maximum pressure loss coefficient. Pressure loss coefficient with bigger incidence than its critical value is decreased. The effect of increasing incidence in a cascade extremely reduce the mass flow rate by the large flow separation region. Consequently this effect reduce the portion of dynamic pressure in the total pressure loss and beyond the critical incidence the pressure loss coefficient decrease.

플랜트 및 선박의 액체용 우량제어밸브 설계에 관한 연구(II) (A Study on the Design of Liquid Flow Control Valves for the Pants and Ships(II))

  • 최순호;배윤영;김태한;한기남;주경인
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제19권2호
    • /
    • pp.1-9
    • /
    • 1995
  • The processing paper has devoted to the theory of the flow equations, the basic derivative procedure, the meaning of a valve flow coefficient $C_v$, the valve Reynolds R$R_{ev}$ and its application for liquid control valves, which applicable under the condition of a non-critical flow and the case of piping geometry factor $F_p$=1.0. However there is no information on the effects of fittings, a critical flow and the flow resistance coefficient of a valve equivalent to that of pipe which is conveniently used in the piping design. Since the piping systems of plants or ships generally contain various fittings such as expanders and reducers due to different size between pipes and valves and there may occur a critical flow, that a mass flowrate is maintained to be constant, due to the pressure drop in a piping when a liquid is initially maintainder ar a saturated temperature or at nearby corresponding to upstream pressure, system designer should have a knowledge of the effect to flow due to fittings and the critical flow phenomenon of a liquid. This study is performed to inform system designers with the critical flow phenomenon of a liquid, a valve resistance coefficient, a valve geometry factor and their applications.

  • PDF