• Title/Summary/Keyword: creep experiment

Search Result 68, Processing Time 0.027 seconds

Prediction of ballooning and burst for nuclear fuel cladding with anisotropic creep modeling during Loss of Coolant Accident (LOCA)

  • Kim, Jinsu;Yoon, Jeong Whan;Kim, Hyochan;Lee, Sung-Uk
    • Nuclear Engineering and Technology
    • /
    • v.53 no.10
    • /
    • pp.3379-3397
    • /
    • 2021
  • In this study, a multi-physics modeling method was developed to analyze a nuclear fuel rod's thermo-mechanical behavior especially for high temperature anisotropic creep deformation during ballooning and burst occurring in Loss of Coolant Accident (LOCA). Based on transient heat transfer and nonlinear mechanical analysis, the present work newly incorporated the nuclear fuel rod's special characteristics which include gap heat transfer, temperature and burnup dependent material properties, and especially for high temperature creep with material anisotropy. The proposed method was tested through various benchmark analyses and showed good agreements with analytical solutions. From the validation study with a cladding burst experiment which postulates the LOCA scenario, it was shown that the present development could predict the ballooning and burst behaviors accurately and showed the capability to predict anisotropic creep behavior during the LOCA. Moreover, in order to verify the anisotropic creep methodology proposed in this study, the comparison between modeling and experiment was made with isotropic material assumption. It was found that the present methodology with anisotropic creep could predict ballooning and burst more accurately and showed more realistic behavior of the cladding.

Circumferential steady-state creep test and analysis of Zircaloy-4 fuel cladding

  • Choi, Gyeong-Ha;Shin, Chang-Hwan;Kim, Jae Yong;Kim, Byoung Jae
    • Nuclear Engineering and Technology
    • /
    • v.53 no.7
    • /
    • pp.2312-2322
    • /
    • 2021
  • In recent studies, the creep rate of Zircaloy-4, one of the basic property parameters of the nuclear fuel code, has been commonly used with the axial creep model proposed by Rosinger et al. However, in order to calculate the circumferential deformation of the fuel cladding, there is a limitation that a difference occurs depending on the anisotropic coefficients used in deriving the circumferential creep equation by using the axial creep equation. Therefore, in this study, the existing axial creep law and the derived circumferential creep results were analyzed through a circumferential creep test by the internal pressurization method in the isothermal conditions. The circumferential creep deformation was measured through the optical image analysis method, and the results of the experiment were investigated through constructed IDECA (In-situ DEformation Calculation Algorithm based on creep) code. First, preliminary tests were performed in the isotropic β-phase. Subsequently in the anisotropic α-phase, the correlations obtained from a series of circumferential creep tests were compared with the axial creep equation, and optimized anisotropic coefficients were proposed based on the performed circumferential creep results. Finally, the IDECA prediction results using optimized anisotropic coefficients based on creep tests were validated through tube burst tests in transient conditions.

Creep performance of concrete-filled steel tubular (CFST) columns and applications to a CFST arch bridge

  • Yang, Meng-Gang;Cai, C.S.;Chen, Yong
    • Steel and Composite Structures
    • /
    • v.19 no.1
    • /
    • pp.111-129
    • /
    • 2015
  • This paper first presents an experimental study of twelve specimens for their creep performance, including nine concrete-filled steel tubular (CFST) columns and three plain concrete columns, subjected to three levels of sustained axial loads for 1710 days. Then, the creep strain curves are predicted from the existing creep models including the ACI 209 model, the MC 78 model, and the MC 90 model, and further a fitted creep model is obtained by experimental data. Finally, the creep effects of a CFST arch bridge are analyzed to compare the accuracy of the existing creep models. The experimental results show that the creep strains in CFST specimens are far less than in the plain concrete specimens and still increase after two years. The ACI 209 model outperforms the MC 78 model and the MC 90 model when predicting the creep behavior of the CFST specimens. Analysis results indicate that the creep effects in the CFST arch bridge are significant. The deflections and stresses calculated by the ACI 209 model are the closest to the fitted model in the three existing models, demonstrating that the ACI 209 model can be used for creep analysis of CFST arch bridges and can meet the engineering accuracy requirement when lack of experimental data.

Investigating creep behavior of Ni-Cr-W alloy pressurized tube at 950 ℃ by using in-situ creep testing system

  • Zhong, Yang;Lan, Kuan-Che;Lee, Hoon;Zhou, Bomou;Wang, Yong;Tsang, D.K.L.;Stubbins, James F.
    • Nuclear Engineering and Technology
    • /
    • v.52 no.7
    • /
    • pp.1481-1485
    • /
    • 2020
  • The creep behavior of Ni-Cr-W alloy at 950 ℃ has been investigated by a novel creep testing system which is capable of in-situ measurement of strain. Tubular specimens were pressurized with argon gas for effective stresses up to 32 MPa. Experimental results show that the thermal fatigue reduces the creep life of the tubular specimens and with the introduction of thermal cycling fatigue the primary stage disappears and the creep rate higher than the pure thermal creep (without thermal fatigue). Also the creep behavior of Ni-Cr-W alloy doesn't consist in the secondary stage. A new creep equation has been derived and implemented into finite element method. The results from the finite element analyses are in good agreement with the creep experiment.

The Creep Behavior of Austentic SUS 27 by Moire Method (모아레法 을 活용 比較한 오우스테나이트系 SUS 27 의 크리이프擧動)

  • 옹장우;이훈주
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.7 no.1
    • /
    • pp.46-51
    • /
    • 1983
  • This study practiced to observe the creep behavior at specific temperature on Austentic SUB 27 stainless steel by Moire method. The results obtained from this study are summarized as follows; In tensile experiment, tensile strength and yielding strength decrease as the temperature increases. Yielding strength is equivalent to 60-70% of tensile strength. Reduction of Area and Elongation show minimum values at 300.deg. C. The results of Moire method using Moire heating resisting grid coincide with LVDT result. Therefor, It is proved that the Moire method has great merit in strain measurement of a creep behavior. In homologous at temp. 0.2 or less, creep behavior is very small amount. But, in more than 0.3, creep behavior is very active. Creep rate increase as temperature increase and creep rate is proportional to .alpha. values of experimental equation.

Compressive Creep Behavior of Fruits

  • Kim, M.S.;Park, J.M.
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 1993.10a
    • /
    • pp.1329-1339
    • /
    • 1993
  • Creep tests were performed to determine the nonlinear viscoelastic properties of apples and pears with the creep experiment apparatus designed in this study. Compressive creep characteristics of fruits were tested at two kinds of storage conditions, four periods of storage and three levels of initial stress. Ten replications were made at each treatment combination. The creep behavior of the fruits could be well described by the nonlinear viscoelastic model as a function of initial stress and time. however, for each level of initial stress applied, the compressive behavior of the samples was satisfactorily represented by Burger's model. For all sample fruits, the longer the samples was stored, the higher the instantaneous elastic strain was observed, and the creep progressed at a high rate. These phenomena were even more remarkable on the fruit stored at the normal temperature storage rather than at the low temperature storage.

  • PDF

Creep of Drift Pin Moment Resisting Joint of LVL under Changing RH (상대습도 변동하의 휨 모멘트가 작용하는 단판적층재 Drift Pin 접합부의 크리프 변형 거동)

  • 홍순일
    • Journal of Korea Foresty Energy
    • /
    • v.18 no.2
    • /
    • pp.84-91
    • /
    • 1999
  • The objective of this study was to present creep and the effects of mechano-sorptive deflection of drift pin moment resisting joint between LVL members under changing relative humidity (RH) conditions. The LVL members with steel gusset were jointed by a square pattern of eight injected drift pin. Three diameter drift pins were used to test specimens (6mm, 10mm, and 16mm). The creep test was conducted under two constant loading conditions : one at 30 kgf(840 kgf-cm) and the other at 60 kgf(1680 kgf-cm). The experiment was conducted in an open shed outside. (1)The total rotation creep model of moment resisting joing can be expressed as the sum of the creep of controlled environment (3-parameter model), dimensional change and mechano-sorptive deflection resulting from the variable environment. (2)Mechanosorptive rotation creep is recoverable as moisture content increases during adsorption. Least squares method for linear regression analysis was performed using mechano-sorptive rotation creep as the dependent variable and moisture content as the independent variable. The slope of low moment specimens are compared with those of high moment. This means that low moment condition is more easily affected by changes in humidity than high moment conditions. (3)Although creep deflection is higher for small diameter drift pin than for large diameter drift pin, the shape of creep deflection curves for all specimens is similar.

  • PDF

Critical Compressive Strain of Concrete under a Long-Term Deformation Effect Part I. Experiments

  • Nghia, Tran Tuan;Chu, In-Yeop;Kim, Jin-Keun
    • International Journal of Concrete Structures and Materials
    • /
    • v.4 no.2
    • /
    • pp.89-96
    • /
    • 2010
  • This paper focuses on the effect of creep on the critical compressive strain (CCS) of concrete. The strain of concrete corresponding to the peak compressive stress is crucial in the selection of the ultimate yield strength of the reinforcing bar used in reinforced concrete columns. Among the various influencing factors, such as the creep, shrinkage, loading rate and confinement, the effect of creep and shrinkage is the most significant. So far, investigations into how these factors can affect the CCS of concrete have been rare. Therefore, to investigate the effect of creep and shrinkage on CCS, an experimental (part I) and a parametric study (part II) were conducted, as presented in these papers (part I considers creep effect, part II considers effect of creep and shrinkage). In part I, experiments pertaining to the loading age, loading rate, loading duration and loading and creep levels were conducted to study the effect of these variables on the CCS of concrete. It was found that the effects of the loading rate, loading age, and level and duration on the CCS of concrete were negligible. However, it is very important to consider the effect of creep.

Development of Small-Specimen Creep Tester for Life Assessment of High Temperature Components of Power Plant (발전소 고온부의 수명 평가를 위한 소형 시편용 크리프 시험기의 개발)

  • Kim, Hyo-Jin;Jeong, Yong-Geun;Park, Jong-Jin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.10 s.181
    • /
    • pp.2597-2602
    • /
    • 2000
  • The most effective means of evaluating remaining life is through the creep testing of samples removed from the component. But sampling of large specimen from in-service component is actually impossible. So, sampling device and small-specimen creep tester have been applied. Sampling device has been devised to extract mechanically small samples by hemispherical, diamond -coated cutter from the surface of turbine rotor bores and thick-walled pipes without subsequent weld repairs requiring post weld heat treatment. A method of manufacturing small creep specimen, 2min gage diameter and 10min gage length, using electron beam welding to attach grip section, has been proven. Small-specimen creep tester has been designed to control atmosphere to prevent stress increment by oxidation during experiment. To determine whether the small specimens successfully reproduce the behavior of large specimens, creep rupture tests for small and large specimens have been performed at identical conditions. Creep rupture times based on small specimens have closely agreed within 5% error compared with that of large specimen. The errors in rupture time have decreased at longer test period. This comparison validates the procedure for fabricating and testing on small specimen. This technique offers potential as an efficient method for remaining life assessment by direct sampling from in -service high temperature components.

Evaluation on the Creep Life Prediction Using Initial Strain Method (초기 연신율법을 이용한 크리프 수명예측 평가)

  • Kong, Yu-Sik;Lim, Man-Bae;Lee, Sang-Pill;Yoon, Han-Ki;Oh, Sae-Kyoo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.6
    • /
    • pp.1069-1076
    • /
    • 2002
  • The high temperature creep behavior of heat machine systems such as aircraft engines, boilers and turbines in power plants and nuclear reactor components have been considered as an important and needful fact. There are considerable research results available for the design of high temperature tube materials in power plants. However, few studies on the Initial Strain Method (ISM) capable of securing repair, maintenance, cost loss and life loss have been made. In this method, 3 long time prediction Of high temperature creep characteristics can be dramatically induced through a short time experiment. The purpose of present study is to investigate the high temperature creep lift of Udimet 720, SCM 440-STD61 and 1Cr-0.5Mo steel using the ISM. The creep test was performed at 40$0^{\circ}C$ to $700^{\circ}C$ under a pure loading. In the prediction of creep life for each materials, the equation of ISM was superior of Larson-Miller Parameter(LMP). Especially, the long time prediction of creep life was identified to improve the reliability.