Browse > Article
http://dx.doi.org/10.1016/j.net.2019.12.024

Investigating creep behavior of Ni-Cr-W alloy pressurized tube at 950 ℃ by using in-situ creep testing system  

Zhong, Yang (Department of Radiation Oncology, Fudan University Shanghai Cancer Center)
Lan, Kuan-Che (Institute of Nuclear Engineering and Science, National Tsing Hua University)
Lee, Hoon (Department of Nuclear, Plasma, and Radiological Engineering, University of Illinois at Urbana-Champaign)
Zhou, Bomou (Shanghai Institute of Applied Physics, Chinese Academy of Sciences (CAS))
Wang, Yong (Shanghai Institute of Applied Physics, Chinese Academy of Sciences (CAS))
Tsang, D.K.L. (Shanghai Institute of Applied Physics, Chinese Academy of Sciences (CAS))
Stubbins, James F. (Shanghai Institute of Applied Physics, Chinese Academy of Sciences (CAS))
Publication Information
Nuclear Engineering and Technology / v.52, no.7, 2020 , pp. 1481-1485 More about this Journal
Abstract
The creep behavior of Ni-Cr-W alloy at 950 ℃ has been investigated by a novel creep testing system which is capable of in-situ measurement of strain. Tubular specimens were pressurized with argon gas for effective stresses up to 32 MPa. Experimental results show that the thermal fatigue reduces the creep life of the tubular specimens and with the introduction of thermal cycling fatigue the primary stage disappears and the creep rate higher than the pure thermal creep (without thermal fatigue). Also the creep behavior of Ni-Cr-W alloy doesn't consist in the secondary stage. A new creep equation has been derived and implemented into finite element method. The results from the finite element analyses are in good agreement with the creep experiment.
Keywords
Ni-Cr-W alloy; Thermal creep; Finite element analysis;
Citations & Related Records
연도 인용수 순위
  • Reference
1 H.-M. Tung, K. Mo, J.F. Stubbins, Biaxial thermal creep of Inconel 617 and haynes 230 at 850 and $950^{\circ}C$, J. Nucl. Mater. 447 (1-3) (2014) 28-37.   DOI
2 K. Mo, W. Lv, H.-M. Tung, D. Yun, Y. Miao, K.-C. Lan, J.F. Stubbins, Biaxial thermal creep of alloy 617 and alloy 230 for VHTR applications, J. Eng. Mater. Technol. 138 (3) (2016), 031015.   DOI
3 R. Viswanathan, Damage Mechanisms and Life Assessment of High Temperature Components, ASM international, 1989.
4 J. Zhang, Y. Ro, H. Zhou, H. Harada, Deformation twins and failure due to thermo-mechanical cycling in TMS-75 superalloy, Scr. Mater. 54 (4) (2006) 655-660.   DOI
5 A. Raffaitin, D. Monceau, F. Crabos, E. Andrieu, The effect of thermal cycling on the high-temperature creep behaviour of a single crystal nickel-based superalloy, Scr. Mater. 56 (4) (2007) 277-280.   DOI
6 J. Zhang, H. Harada, Y. Ro, Y. Koizumi, T. Kobayashi, Thermomechanical fatigue mechanism in a modern single crystal nickel base superalloy TMS-82, Acta Mater. 56 (13) (2008) 2975-2987.   DOI
7 J. Zhang, H. Harada, Y. Koizumi, T. Kobayashi, Crack appearance of single-crystal nickel-base superalloys after thermomechanical fatigue failure, Scr. Mater. 61 (12) (2009) 1105-1108.   DOI
8 J. Cormier, M. Jouiad, F. Hamon, P. Villechaise, X. Milhet, Very high temperature creep behavior of a single crystal Ni-based superalloy under complex thermal cycling conditions, Philos. Mag. Lett. 90 (8) (2010) 611-620.   DOI
9 B. Fu, J. Zhang, H. Harada, Significant thinning of deformation twins and its effect on thermomechanical fatigue fracture in nickel base single crystal superalloys, Mater. Sci. Eng. A 605 (2014) 253-259.   DOI
10 F. Sun, J. Zhang, H. Harada, Deformation twinning and twinning-related fracture in nickel-base single-crystal superalloys during thermomechanical fatigue cycling, Acta Mater. 67 (2014) 45-57.   DOI
11 C. Panwisawas, N. D'Souza, D.M. Collins, A. Bhowmik, B. Roebuck, History dependence of the microstructure on time-dependent deformation during insitu cooling of a nickel-based single-crystal superalloy, Metall. Mater. Trans. A 49 (9) (2018) 3963-3972.   DOI
12 R. Vetriselvan, P. Sathiya, G. Ravichandran, Experimental and numerical investigation on thermal fatigue behaviour of 9Cr 1Mo steel tubes, Eng. Fail. Anal. 84 (2018) 139-150.   DOI
13 F. Garner, M. Hamilton, R. Puigh, C. Eiholzer, D. Duncan, M. Toloczko, A. Kumar, The Influence of Specimen Size on Measurement of Thermal or Irradiation Creep in Pressurized Tubes, Effects of Radiation on Materials: Sixteenth International Symposium, ASTM International, 1994.
14 G.M. Timoshenko P, W. Prager, Theory of Elastic Stability, 1962.
15 G. Jianting, D. Ranucci, E. Picco, P. Strocchi, An investigation on the creep and fracture behavior of cast nickel-base superalloy IN738LC, Metallurgical Transactions A 14 (11) (1983) 2329-2335.   DOI
16 K. Chen, J. Dong, Z. Yao, T. Ni, M. Wang, Creep performance and damage mechanism for Allvac 718Plus superalloy, Mater. Sci. Eng. A 738 (2018) 308-322.   DOI
17 S. Chatterjee, A.K. Roy, Mechanism of creep deformation of Alloy 230 based on microstructural analyses, Mater. Sci. Eng. A 527 (29-30) (2010) 7893-7900.   DOI
18 D. Chapin, S. Kiffer, J. Nestell, The Very High Temperature Reactor: A Technical Summary, MPR Associates, Inc, Alexandria, 2004.
19 W.R. Corwin, T. Burchell, W. Halsey, G. Hayner, Y. Katoh, J. Klett, T. McGreevy, R. Nanstad, W. Ren, L. Snead, Updated Generation IV Reactors Integrated Materials Technology Program Plan, 2004. ORNL/TM-2003/244 1.
20 W. Ren, R. Swindeman, A review on current status of alloys 617 and 230 for Gen IV nuclear reactor internals and heat exchangers, J. Press. Vessel Technol. 131 (4) (2009), 044002.   DOI
21 J. Vitek, D. Braski, J. Horak, Effect of preinjected helium on the response of V-20Ti pressurized tubes to neutron irradiation, J. Nucl. Mater. 141 (1986) 982-986.   DOI
22 C. Boehlert, S. Longanbach, A comparison of the microstructure and creep behavior of cold rolled HAYNES(R) 230 $alloy^{TM}$ and HAYNES(R) 282 $alloy^{TM}$, Mater. Sci. Eng. A 528 (15) (2011) 4888-4898.   DOI
23 J. Yoon, H. Jeong, Y. Yoo, H. Hong, Influence of initial microstructure on creep deformation behaviors and fracture characteristics of Haynes 230 superalloy at $900^{\circ}C$, Mater. Char. 101 (2015) 49-57.   DOI
24 E. Gilbert, J. Bates, Dependence of Irradiation Creep on Temperature and Atom Displacements in 20% Cold Worked Type 316 Stainless Steel, Measurement of Irradiation-Enhanced Creep in Nuclear Materials, Elsevier1977, pp. 204-209.
25 H. Tsai, H. Matsui, M. Billone, R. Strain, D. Smith, Irradiation creep of vanadium-base alloys, J. Nucl. Mater. 258 (1998) 1471-1475.   DOI
26 E. Gilbert, L. Blackburn, Creep deformation of 20 percent cold worked type 316 stainless steel, J. Eng. Mater. Technol. 99 (2) (1977) 168-180.   DOI