DOI QR코드

DOI QR Code

Investigating creep behavior of Ni-Cr-W alloy pressurized tube at 950 ℃ by using in-situ creep testing system

  • Zhong, Yang (Department of Radiation Oncology, Fudan University Shanghai Cancer Center) ;
  • Lan, Kuan-Che (Institute of Nuclear Engineering and Science, National Tsing Hua University) ;
  • Lee, Hoon (Department of Nuclear, Plasma, and Radiological Engineering, University of Illinois at Urbana-Champaign) ;
  • Zhou, Bomou (Shanghai Institute of Applied Physics, Chinese Academy of Sciences (CAS)) ;
  • Wang, Yong (Shanghai Institute of Applied Physics, Chinese Academy of Sciences (CAS)) ;
  • Tsang, D.K.L. (Shanghai Institute of Applied Physics, Chinese Academy of Sciences (CAS)) ;
  • Stubbins, James F. (Shanghai Institute of Applied Physics, Chinese Academy of Sciences (CAS))
  • Received : 2019.10.27
  • Accepted : 2019.12.23
  • Published : 2020.07.25

Abstract

The creep behavior of Ni-Cr-W alloy at 950 ℃ has been investigated by a novel creep testing system which is capable of in-situ measurement of strain. Tubular specimens were pressurized with argon gas for effective stresses up to 32 MPa. Experimental results show that the thermal fatigue reduces the creep life of the tubular specimens and with the introduction of thermal cycling fatigue the primary stage disappears and the creep rate higher than the pure thermal creep (without thermal fatigue). Also the creep behavior of Ni-Cr-W alloy doesn't consist in the secondary stage. A new creep equation has been derived and implemented into finite element method. The results from the finite element analyses are in good agreement with the creep experiment.

Keywords

References

  1. D. Chapin, S. Kiffer, J. Nestell, The Very High Temperature Reactor: A Technical Summary, MPR Associates, Inc, Alexandria, 2004.
  2. W.R. Corwin, T. Burchell, W. Halsey, G. Hayner, Y. Katoh, J. Klett, T. McGreevy, R. Nanstad, W. Ren, L. Snead, Updated Generation IV Reactors Integrated Materials Technology Program Plan, 2004. ORNL/TM-2003/244 1.
  3. W. Ren, R. Swindeman, A review on current status of alloys 617 and 230 for Gen IV nuclear reactor internals and heat exchangers, J. Press. Vessel Technol. 131 (4) (2009), 044002. https://doi.org/10.1115/1.3121522
  4. S. Chatterjee, A.K. Roy, Mechanism of creep deformation of Alloy 230 based on microstructural analyses, Mater. Sci. Eng. A 527 (29-30) (2010) 7893-7900. https://doi.org/10.1016/j.msea.2010.08.069
  5. C. Boehlert, S. Longanbach, A comparison of the microstructure and creep behavior of cold rolled HAYNES(R) 230 $alloy^{TM}$ and HAYNES(R) 282 $alloy^{TM}$, Mater. Sci. Eng. A 528 (15) (2011) 4888-4898. https://doi.org/10.1016/j.msea.2011.03.019
  6. J. Yoon, H. Jeong, Y. Yoo, H. Hong, Influence of initial microstructure on creep deformation behaviors and fracture characteristics of Haynes 230 superalloy at $900^{\circ}C$, Mater. Char. 101 (2015) 49-57. https://doi.org/10.1016/j.matchar.2015.01.002
  7. E. Gilbert, J. Bates, Dependence of Irradiation Creep on Temperature and Atom Displacements in 20% Cold Worked Type 316 Stainless Steel, Measurement of Irradiation-Enhanced Creep in Nuclear Materials, Elsevier1977, pp. 204-209.
  8. J. Vitek, D. Braski, J. Horak, Effect of preinjected helium on the response of V-20Ti pressurized tubes to neutron irradiation, J. Nucl. Mater. 141 (1986) 982-986. https://doi.org/10.1016/0022-3115(86)90129-7
  9. H. Tsai, H. Matsui, M. Billone, R. Strain, D. Smith, Irradiation creep of vanadium-base alloys, J. Nucl. Mater. 258 (1998) 1471-1475. https://doi.org/10.1016/S0022-3115(98)00211-6
  10. E. Gilbert, L. Blackburn, Creep deformation of 20 percent cold worked type 316 stainless steel, J. Eng. Mater. Technol. 99 (2) (1977) 168-180. https://doi.org/10.1115/1.3443428
  11. H.-M. Tung, K. Mo, J.F. Stubbins, Biaxial thermal creep of Inconel 617 and haynes 230 at 850 and $950^{\circ}C$, J. Nucl. Mater. 447 (1-3) (2014) 28-37. https://doi.org/10.1016/j.jnucmat.2013.12.016
  12. K. Mo, W. Lv, H.-M. Tung, D. Yun, Y. Miao, K.-C. Lan, J.F. Stubbins, Biaxial thermal creep of alloy 617 and alloy 230 for VHTR applications, J. Eng. Mater. Technol. 138 (3) (2016), 031015. https://doi.org/10.1115/1.4033322
  13. R. Viswanathan, Damage Mechanisms and Life Assessment of High Temperature Components, ASM international, 1989.
  14. J. Zhang, Y. Ro, H. Zhou, H. Harada, Deformation twins and failure due to thermo-mechanical cycling in TMS-75 superalloy, Scr. Mater. 54 (4) (2006) 655-660. https://doi.org/10.1016/j.scriptamat.2005.10.030
  15. A. Raffaitin, D. Monceau, F. Crabos, E. Andrieu, The effect of thermal cycling on the high-temperature creep behaviour of a single crystal nickel-based superalloy, Scr. Mater. 56 (4) (2007) 277-280. https://doi.org/10.1016/j.scriptamat.2006.10.026
  16. J. Zhang, H. Harada, Y. Ro, Y. Koizumi, T. Kobayashi, Thermomechanical fatigue mechanism in a modern single crystal nickel base superalloy TMS-82, Acta Mater. 56 (13) (2008) 2975-2987. https://doi.org/10.1016/j.actamat.2008.02.035
  17. J. Zhang, H. Harada, Y. Koizumi, T. Kobayashi, Crack appearance of single-crystal nickel-base superalloys after thermomechanical fatigue failure, Scr. Mater. 61 (12) (2009) 1105-1108. https://doi.org/10.1016/j.scriptamat.2009.08.036
  18. J. Cormier, M. Jouiad, F. Hamon, P. Villechaise, X. Milhet, Very high temperature creep behavior of a single crystal Ni-based superalloy under complex thermal cycling conditions, Philos. Mag. Lett. 90 (8) (2010) 611-620. https://doi.org/10.1080/09500839.2010.489887
  19. B. Fu, J. Zhang, H. Harada, Significant thinning of deformation twins and its effect on thermomechanical fatigue fracture in nickel base single crystal superalloys, Mater. Sci. Eng. A 605 (2014) 253-259. https://doi.org/10.1016/j.msea.2014.03.060
  20. F. Sun, J. Zhang, H. Harada, Deformation twinning and twinning-related fracture in nickel-base single-crystal superalloys during thermomechanical fatigue cycling, Acta Mater. 67 (2014) 45-57. https://doi.org/10.1016/j.actamat.2013.12.011
  21. C. Panwisawas, N. D'Souza, D.M. Collins, A. Bhowmik, B. Roebuck, History dependence of the microstructure on time-dependent deformation during insitu cooling of a nickel-based single-crystal superalloy, Metall. Mater. Trans. A 49 (9) (2018) 3963-3972. https://doi.org/10.1007/s11661-018-4703-3
  22. R. Vetriselvan, P. Sathiya, G. Ravichandran, Experimental and numerical investigation on thermal fatigue behaviour of 9Cr 1Mo steel tubes, Eng. Fail. Anal. 84 (2018) 139-150. https://doi.org/10.1016/j.engfailanal.2017.11.005
  23. F. Garner, M. Hamilton, R. Puigh, C. Eiholzer, D. Duncan, M. Toloczko, A. Kumar, The Influence of Specimen Size on Measurement of Thermal or Irradiation Creep in Pressurized Tubes, Effects of Radiation on Materials: Sixteenth International Symposium, ASTM International, 1994.
  24. G.M. Timoshenko P, W. Prager, Theory of Elastic Stability, 1962.
  25. G. Jianting, D. Ranucci, E. Picco, P. Strocchi, An investigation on the creep and fracture behavior of cast nickel-base superalloy IN738LC, Metallurgical Transactions A 14 (11) (1983) 2329-2335. https://doi.org/10.1007/BF02663308
  26. K. Chen, J. Dong, Z. Yao, T. Ni, M. Wang, Creep performance and damage mechanism for Allvac 718Plus superalloy, Mater. Sci. Eng. A 738 (2018) 308-322. https://doi.org/10.1016/j.msea.2018.09.088