• Title/Summary/Keyword: creep effect

Search Result 363, Processing Time 0.029 seconds

Thermal Aging and Creep Rupture Behavior of STS 316 (STS 316의 시효 열화 처리와 크리프 거동 특성)

  • 임병수
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.8 no.4
    • /
    • pp.123-129
    • /
    • 1999
  • Although type 316 stainless steel is widely used such as in reactors of petrochemical plants and pipes of steam power plants and s attracting attention as potential basic material for the fast breeder reactor structure alloys in nuclear power plants and is attracting attention as potential basic material for the fast breeder reactor structure alloys in nuclear power plants the effect of precipitates which form during the long term exposure at service temperature on creep properties is not known sufficiently. In this study to investigate the creep properties and the influence of prior aging on the microstructure to form precipitates specimens were first solutionized at 113$0^{\circ}C$ for 20 minutes and then aged for different times of 0 hr, 100 hrs, 1000 hrs and 2200 hrs at 75$0^{\circ}C$ After heat treatments tensile tests both at room temperature and $650^{\circ}C$ and constant load creep ruptuere tests were carried out.

  • PDF

Tensile and Compressive Creep Behaviors of Amorphous Steel Fiber-Reinforced Concrete

  • Truong, Gia Toai;Choi, Kyoung-Kyu;Choi, Oan-Chul
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.1 no.3
    • /
    • pp.197-203
    • /
    • 2013
  • In this study, the creep behaviors of amorphous steel fiber-reinforced concrete were investigated. Two different types of tests were carried out to evaluate the effect of amorphous steel fibers on the creep of concrete: compressive creep test and tensile creep test. Fiber volume fractions used in the test were 0.2% and 0.4% for tensile specimens, and 0.2% and 0.3% for compressive specimens. Based on the test results, the addition of fiber volume fraction of 0.2% into concrete could significantly reduce both compressive and tensile creep.

Basic Creep Model by Considering Autogenous Shrinkage

  • Lee, Yun;Kim, Jin-Keun;Kim, Min-Su
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2003.05a
    • /
    • pp.1071-1076
    • /
    • 2003
  • Basic creep of concrete during very early ages is an important factor on the behavior of young concrete and a great deal of research has been executed. However, in recent studies, it was revealed that the basic creep measured by sealed concrete was inaccurate, especially for high strength concrete because of autogenous shrinkage at early age. This paper presents the results from experimental study that investigate to explore the effect of autogenous shrinkage in basic creep. More specifically, four different mix proportions were casted and the primary variables were water-cement ratios. Through this research, it was found that the differences between apparent specific creep and real specific creep were remarkable in low water-cement ratio at early age. Therefore, it is recommended to modify existing creep model by considering autogenous shrinkage

  • PDF

A Study on the Creep Parameters of Ansan Marine Clay (안산지역 해함점토의 크리프 정수에 관한 연구)

  • 정형식;안상로
    • Geotechnical Engineering
    • /
    • v.9 no.4
    • /
    • pp.93-102
    • /
    • 1993
  • Soil structures which are constructed over the soft ground settle continuously by the self-weight of embankment for a long time. It is because of timetependent behaviours . consolidation and creep occurring simultaneously. This paper tries to determine the required parameters for analysis of the creep behaviour in marine clays and studied the effect of the confining stress and stress level on the creep parameters . As a result, it presents an equation for the determination of creep parameters according to stress level considering that elastic modulus El and creep parameter f are found to be affected by the applied stress level.

  • PDF

Effect of Hardness and Substructure on Long-term Creep Behavior of Mod.9Cr-1Mo Steel (개량 9Cr-1Mo 강의 장시간 크리프거동에 미치는 경도와 하부조직의 영향)

  • 박규섭;이근진;정한식;김정호;정영관;엔도타카오
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.2
    • /
    • pp.168-176
    • /
    • 2004
  • Interrupted creep tests were carried out on the Mod.9Cr-1Mo steel in order to investigate the structural degradation during creep. The ranges of creep stress and temperature were from 71 to 167MPa and 873 to 923k, respectively. The change of hardness and tempered martensitic lath width were measured in the grip and gauge parts of interrupted specimens. The lath structure was thermally stable in static conditions, but was not stable during creep, and the structural evolution was enhanced by creep strain. The relation between the change in lath width and strain was described in the from, $\delta$W= a ($W_s-W_o$)$cdot;varepsilon$, where $\varepsilon$ is the strain, $W_o$is the initial lath width, $W_s$ is the final lath width depending solely on stress, and a is the constant of the magnitude of 0.67 $\mu$m /strain. The change in Victors hardness was expressed by a one-valued function of creep life consumption ratio. Based on the empirical relation between strain and lath width, a model was proposed to explain the relation between change in hardness and creep life consumption ratio. The model revealed that about 65$%$ of dislocations in lath structures were eliminated by the migration of subboundaries.

Thermal Creep Behavior of Advanced Zirconium Claddings Contained Niobium (Nb가 첨가된 신형 지르코늄 피복관의 열적 크리프 거동)

  • Kim Jun Hwan;Bang Je Geon;Jeong Yong Hwan
    • Korean Journal of Materials Research
    • /
    • v.14 no.7
    • /
    • pp.451-456
    • /
    • 2004
  • Thermal creep properties of the zirconium tube which was developed for high burnup application were evaluated. The creep test of cladding tubes after various final heat treatment was carried out by the internal pressurization method in the temperature range from $350^{\circ}C to 400^{\circ}C$ and from 100 to 150 MPa in the hoop stress. Creep tests were lasted up to 900days, which showed the steady-state secondary creep rate. The creep resistance of zirconium claddings was higher than that of Zircaloy-4. Factors that affect creep resistance, such as final annealing temperature, applied stress and alloying element were discussed. Tin as an alloying element was more effective than niobium due to solute hardening effect of tin. In case of advanced claddings, the optimization of final heat treatment temperature as well as alloying element causes a great influence on the improvement of creep resistance.

Creep Fracture Mechanics Analysis for Through-Wall Cracked Pipes under Widespread Creep Condition (광범위 크리프 조건에 대한 관통균열 배관의 크리프 파괴역학 해석)

  • Huh, Nam-Su;Kim, Yun-Jae;Kim, Young-Jin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.6
    • /
    • pp.890-897
    • /
    • 2003
  • This paper compares engineering estimation schemes of C* and creep COD for circumferential and axial through-wall cracked pipes at elevated temperatures with detailed 3-D elastic-creep finite element results. Engineering estimation schemes included the GE/EPRI method, the reference stress method where reference stress is defined based on the plastic limit load and the enhanced reference stress method where the reference stress is defined based on the optimized reference load. Systematic investigations are made not only on the effect of creep-deformation behaviour on C* and creep COD, but also on effects of the crack location, the pipe geometry, the crack length and the loading mode. Comparison of the FE results with engineering estimations provides that for idealized power law creep, estimated C* and COD rate results from the GE/EPRI method agree best with FE results. For general creep-deformation laws where either primary or tertiary creep is important and thus the GE/EPRI method is hard to apply, on the other hand, the enhanced reference stress method provides more accurate and robust estimations for C* and COD rate than the reference stress method.

A Study on Parameters Measured during Small Punch Creep Testing (소형펀치 크리프 시험중 측정하는 변수에 대한 연구)

  • Park, Tae-Gyu;Sim, Sang-Hun;Yun, Gi-Bong;Jang, Chang-Hui
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.1
    • /
    • pp.171-178
    • /
    • 2002
  • An effect is made in this study to deepen understanding of small punch(SP) creep testing which has been a round for about 10 years as a substitute for the conventional uniaxial creep testing. Even though considerable numbers of SP creep test program have been performed, most of the tests were aimed at measuring creep rupture lives only. Very flew studies showed interest on the meaning of what we were really measuring during the SP creep tests. In this paper meanings of the parameters measured during the SP creep testing, such as punch load and punch displacement rate are investigated using finite element analysis. It was shown that the measured parameters must represent the stress and strain rates of the material at the annular region located at about 0.65 mm from the center of the SP specimen. The material in this location would go through constant maximum stress and strain rate during the testing. Experimental verification is also discussed.

Effect of Friction Coefficient on the Small Punch Creep Behavior of AISI 316L Stainless Steel (AISI 316L스테인리스강의 소형펀치 크리프 거동에 미치는 마찰계수의 영향)

  • Kim, Bum-Joon;Cho, Nam-Hyuck;Kim, Moon-K;Lim, Byeong-Soo
    • Korean Journal of Metals and Materials
    • /
    • v.49 no.7
    • /
    • pp.515-521
    • /
    • 2011
  • Small punch creep testing has received attention due to the convenience of using smaller specimens than those of conventional uniaxial creep tests, which enables creep testing on developing or currently operational components. However, precedent studies have shown that it is necessary to consider friction between the punch and specimen when computing uniaxial equivalent stress from a finite element model. In this study, small punch creep behaviors of AISI 316L stainless steel, which is widely used in high temperature-high pressure machineries, have been compared for the two different ceramic balls such as $Si_3N_4$ and $Al_2O_3$. The optimal range of the friction coefficient is 0.4~0.5 at $650^{\circ}C$ for the best fit between experimental and simulation data of AISI 316 L stainless steel. The higher the friction coefficient, the longer the creep rupture time is. Therefore, the type of ceramic ball used must be specified for standardization of small punch creep testing.