• 제목/요약/키워드: creep curvature

검색결과 17건 처리시간 0.024초

부르돈관의 가공정밀도 향상에 관한 연구 (A Study on the lmprovement of Accuracy in Manufacturing of Bourdon Tube)

  • 나기형;장경영
    • 한국정밀공학회지
    • /
    • 제13권8호
    • /
    • pp.31-39
    • /
    • 1996
  • In this paper, the error and its sources in manufacturing of bourdon tube pressure gage was studied, and the method to reduce such errors was discussed. In more detail, the effects of parallelism of rollers, spring back, uniformity of radius curvature and the ratio of circumferential speeds of rollers were invesrti- gated. As a reselt, we could find out that the aprallelism of roller affected to the displacement error at the free end of gage and that the amount of spring back was closely related with the ratio of circumferential speeds of rollers. The uniformity of curvature radius was determined by the distance between bending rollers and it was comparatively uniform in the range above 30 .deg. C from the both sides of tube. Also, the ratio of circumfer-ential speeds of rollers was finded out as a very important factor giving severe influence on the creep or the hysteresis of bourdon tube.

  • PDF

직선배치 긴장재를 갖는 PSC 휨 부재의 시간종속적 지배미분방정식 (Time-Dependent Differential Equation of PSC Flexural Member with Constant Eccentricity)

  • 강병수;김택중;조용덕;이용학
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2002년도 봄 학술발표회 논문집
    • /
    • pp.303-308
    • /
    • 2002
  • A governing differential equation (GDE) of PSC flexural member with constant eccentricity considering the long-term losses including concrete creep, shrinkage, and PS steel relaxation is derived based on the two approaches. The first approach utilizes the force and moment equilibrium equations derived based on the geometry of strains of the uniform and curvature strains while the second one utilizes the principle of minimum total potential energy formulation. The identity of the two GDE's is verified by comparing the coefficients consisting of the GDE's. The boundary conditions resulting from the functional analysis of the variational calculus are investigated. Rayleigh-Ritz method provides a way to get the explicit form of the continuous deflection function in which the total potential energy is minimized with respect to the unknown coefficients consisting of the trial functions. As a closure, the analytically calculated results are compared with the experiments and show good agreements.

  • PDF

콘크리트의 초기재령특성을 고려한 합성형 휨 부재의 재령종속적 처짐해석 (Deflection Analysis of Flexural Composite Members Considering Early-Age Concrete Properties)

  • 성원진;김정현;윤성욱;이용학
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2003년도 봄 학술발표회 논문집
    • /
    • pp.427-432
    • /
    • 2003
  • An analytical method to predict the flexural behavior of composite girder is presented in which the early-age properties of concrete are specified including maturing of elastic modulus, creep and shrinkage. The time dependent constitutive relation accounting for the early-age concrete properties is derived in an incremental format by expanding the total form of stress-strain relation by the first order Taylor series with respect to the reference time. The sectional analysis calculates the axial and curvature strains based on the force and moment equilibriums. The deflection curve of the box girder approximated by the quadratic polynomial function is calculated by applying to the proper boundary conditions in the consecutive segments. Numerical applications are made for the 3-span double composite steel box girders which is a composite bridge girder filled with concrete at the bottom of the steel box in the negative moment region. The one dimensional finite element analysis results are compared with those of the three dimensional finite element analysis and the analytical method based on the sectional analysis. Close agreement is observed among the three methods.

  • PDF

합성단면의 콘크리트 크리프 효과에 대한 일반화 매개변수의 민감도 분석 (Sensitivity Analysis of Generalized Parameters on Concrete Creep Effects of Composite Section)

  • 연정흠;김의헌
    • 콘크리트학회논문집
    • /
    • 제21권5호
    • /
    • pp.629-638
    • /
    • 2009
  • 합성단면을 구성하는 콘크리트 단면에 크리프에 의한 장기변형이 발생되면 합성단면에는 추가의 변형이 발생되며 콘크리트 단면에는 장기변형의 일부구속으로 잔류응력이 발생한다. 이 논문에서는 복잡한 합성단면에서 콘크리트 단면의 장기변형에 대한 반응을 평가하는 기존의 단계별계산법을 보다 효율적으로 적용할 수 있도록 일반화 하였다. 장기변형이 발생하는 콘크리트 단면과 이 변형의 일부를 구속하는 구속단면의 단면특성과 재료특성으로부터 초기 합성단면의 환산단면특성이 유도되고, 각 단계의 크리프계수가 고려된 유효탄성계수가 적용된 환산 단면특성이 유도되었다. 합성단면의 일반화 반응에 대한 5개의 일반화 매개변수로 구성된 단계별계산법의 식이 유도되었다. 각 단계별 계산식에는 크리프계수의 증가가 일정하도록 하여 식의 단순화와 계산시간의 감축 및 균등한 단계별 계산오차가 가능한 균등 크리프 단계별계산법을 제안하였다. 콘크리트 단면의 초기 축방향 탄성 변형률에 대한 일반화 반응은 콘크리트 단면적의 비율에 가장 민감하고, 콘크리트 단면의 단면이차모멘트 비율보다는 구속단면의 단면이차모멘트 비율에 보다 민감하였다. 반면에 콘크리트 단면의 초기 탄성곡률에 대해서는 콘크리트 단면의 단면이차모멘트 비율에 가장 민감하였다.

단면해석법을 이용한 합성형 휨 부재의 재령 종속적 처짐해석 (Concrete Aging-Dependent Deflection Analysis of Flexural Composite Members Using Sectional Analysis Method)

  • 성원진;김정현;이용학
    • 콘크리트학회논문집
    • /
    • 제16권2호
    • /
    • pp.155-162
    • /
    • 2004
  • 초기재령 콘크리트의 탄성계수 변화와 크리프 및 건조수축 현상을 고려하는 강 합성 거더의 시간종속적 처짐해석을 수행하였다. 초기재령 콘크리트의 탄성계수 발현과정을 고려한 구성관계는 총 응력-변형률 관계를 Taylor의 선형급수 확장을 이용하여 기준시간에 관하여 확장함으로써 시간종속적 증분형태로 유도하였다. 강 박스거더의 단면형상 변화 위치와 지점부를 기준하여 거더를 분할하고 분할된 구간에서 단면해석을 통해 곡률을 구하여 2차 다항식으로 가정한 처짐곡선에 경계조건을 적용함으로써 처짐곡선의 증분관계식을 유도하였다. 부모멘트 구간의 강 박스 하단에 콘크리트를 타설한 이중합성 박스거더의 초기재령 거동해석을 수행하였으며, 강 박스 하단의 콘크리트 타설두께가 거더의 거동에 주는 영향을 수치해석 결과를 통해 분석하였다. 끝으로, 보 요소를 이용한 유한요소해석 결과와 개발된 단면해석법을 이용한 해석 결과를 비교함으로써 정확성을 검증하였다.

New constitutive models for non linear analysis of high strength fibrous reinforced concrete slabs

  • Yaseen, Ahmed Asaad;Abdul-Razzak, Ayad A.
    • Structural Engineering and Mechanics
    • /
    • 제82권1호
    • /
    • pp.121-131
    • /
    • 2022
  • The main goal of this study is to prepare a program for analyzing High Strength Steel Fibrous Reinforced Concrete (HSSFRC) slabs and predict the response and strength of the slab instead of preparing a prototype and testing it in the laboratory. For this purpose, new equations are proposed to represent the material properties of High Strength Steel Fibrous Reinforced Concrete. The proposed equations obtained from performing regression analysis on many experimental results using statistical programs. The finite element method is adopted for non-linear analysis of the slabs. The eight-node "Serendipity element" (3 DoF) is chosen to represent the concrete. The layered approach is adopted for concrete elements and the steel reinforcement is represented by a smeared layer. The compression properties of the concrete are modeled by a work hardening plasticity approach and the yield condition is determined depending on the first two stress invariants. A tensile strength criterion is adopted in order to estimate the cracks propagation. many experimental results for testing slabs are compared with the numerical results of the present study and a good agreement is achieved regarding load-deflection curves and crack pattern. The response of the load deflection curve is slightly stiff at the beginning because the creep effect is not considered in this study and for assuming perfect bond between the steel reinforcement and the concrete, however, a great agreement is achieved between the ultimate load from the present study and experimental results. For the models of the tension stiffening and cracked shear modulus, the value of Bg and Bt (Where Bg and Bt are the curvature factor for the cracked shear modulus and tension stiffening models respectively) equal to 0.005 give good results compared with experimental result.

Construction stages analyses using time dependent material properties of concrete arch dams

  • Sevim, Baris;Altunisik, Ahmet C.;Bayraktar, Alemdar
    • Computers and Concrete
    • /
    • 제14권5호
    • /
    • pp.599-612
    • /
    • 2014
  • This paper presents the effects of the construction stages using time dependent material properties on the structural behaviour of concrete arch dams. For this purpose, a double curvature Type-5 arch dam suggested in "Arch Dams" symposium in England in 1968 is selected as a numerical example. Finite element models of Type-5 arch dam are modelled using SAP2000 program. Geometric nonlinearity is taken into consideration in the construction stage analysis using P-Delta plus large displacement criterion. In addition, the time dependent material strength variations and geometric variations are included in the analysis. Elasticity modulus, creep and shrinkage are computed for different stages of the construction process. In the construction stage analyses, a total of 64 construction stages are included. Each stage has generally $6000m^3$ concrete volume. Total duration is taken into account as 1280 days. Maximum total step and maximum iteration for each step are selected as 200 and 50, respectively. The structural behaviour of the arch dam at different construction stages has been examined. Two different finite element analyses cases are performed. In the first case, construction stages using time dependent material properties are considered. In the second case, only linear static analysis (not considered construction stages) is taken into account. Variation of the displacements and stresses are obtained from the both analyses. It is highlighted that construction stage analysis using time dependent material strength variations and geometric variations has an important effect on the structural behaviour of arch dams. The maximum longitudinal, transverse and vertical displacements obtained from construction stages and static analyses are 1.35 mm and 0 mm; -8.44 and 6.68 mm; -4.00 and -9.90 mm, respectively. In addition, vertical displacements increase from the base to crest of the dam for both analyses. The maximum S11, S22 and S33 stresses are obtained as 1.60MPa and 2.84MPa; 1.39MPa and 2.43MPa; 0.60MPa and 0.50MPa, respectively. The differences between maximum longitudinal, transverse, and vertical stresses obtained from construction stage and static analyses are 78%, 75%, and %17, respectively. On the other hand, there is averagely 12% difference between minimum stresses for all three directions.