• Title/Summary/Keyword: creative problem solving in science

Search Result 275, Processing Time 0.028 seconds

The Recognition Characteristics of Science Gifted Students on the Earth System based on their Thinking Style (과학 영재 학생들의 사고양식에 따른 지구시스템에 대한 인지 특성)

  • Lee, Hyonyong;Kim, Seung-Hwan
    • Journal of Science Education
    • /
    • v.33 no.1
    • /
    • pp.12-30
    • /
    • 2009
  • The purpose of this study was to analyze recognition characteristics of science gifted students on the earth system based on their thinking style. The subjects were 24 science gifted students at the Science Institute for Gifted Students of a university located in metropolitan city in Korea. The students' thinking styles were firstly examined on the basis of the Sternberg's theory of mental self-government. And then, the students were divided into two groups: Type I group(legislative, judicial, global, liberal) and Type II group(executive, local, conservative) based on Sternberg's theory. Data was collected from three different type of questionnaires(A, B, C types), interview, word association method, drawing analyses, concept map, hidden dimension inventory, and in-depth interviews. The findings of analysis indicated that their thinking styles were characterized by 'Legislative', 'Executive', 'Anarchic', 'Global', 'External', 'Liberal' styles. Their preference were conducting new projects and using creative problem solving processes. The results of students' recognition characteristics on earth system were as follows: First, though the two groups' quantitative value on 'System Understanding' was very similar, there were considerable distinctions in details. Second, 'Understanding the Relationship in the System' was closely connected to thinking styles. Type I group was more advantageous with multiple, dynamic, and recursive approach. Third, in the relation to 'System Generalization' both of the groups had similar simple interpretational ability of the system, but Type I group was better on generalization when 'hidden dimension inventory' factor was added. On the system prediction factor, however, students' ability was weak regardless of the type. Consequently, more specific development strategies on various objects are needed for the development and application of the system learning program. Furthermore, it is expected that this study could be practically and effectively used on various fields related to system recognition.

  • PDF

The Development on Core Competency Model of Scientist and Its Verification for Competency-Based Science Gifted Education (역량 중심의 과학 영재 교육을 위한 과학자의 핵심 역량 모델 개발 및 타당화)

  • Park, Jae-Jin;Yoon, Jihyun;Kang, Seong-Joo
    • Journal of Gifted/Talented Education
    • /
    • v.24 no.4
    • /
    • pp.509-541
    • /
    • 2014
  • There was a great need to consider a core competency-based approach as a new direction of the science education for gifted students according to the value and vision of the 21st century knowledge-based societies. Therefore we developed a core competency model of scientist and examined its validity as a prerequisite for a core competency-based education of science gifted students. In order to this, the survey was conducted after developing questionnaire through the theoretical review of the various resources such as paper, book, and newspaper articles and the qualitative analysis of the behavioral event interview, and then an exploratory factor analysis was performed to validate the factor structure based on the results of the survey. The results revealed that the core competency model with the 5 cluster units of competency and the 15 core competencies was potentially constituted. And the reliability, convergent validity, and discriminant validity of the core competency model were verified through the confirmatory factor analysis. The cognitive cluster consisted of 5 competencies and they were as follows: creative, comprehensive, exploratory, analytical, and conceptual thinking competency. The achievement-orientation cluster consisted of 3 competencies and they were as follows: initiative, preparation & problem solving, and strategic influence competency. The scientific attitude cluster consisted of 3 competencies and they were as follows: flexible thinking & attitude, passion for research, and views about science competency. The personal effectiveness cluster consisted of 2 competencies and they were as follows: diverse experiences and global attitude competency. Finally, the networking cluster consisted of 2 competencies and they were as follows: personal understanding and communication competency. Findings were expected to provide the basic data for developing programs and establishing strategies based on the core competency as well as introducing the core competency model of scientist to science education for gifted students effectively.

Retail Product Development and Brand Management Collaboration between Industry and University Student Teams (산업여대학학생단대지간적령수산품개발화품패관리협작(产业与大学学生团队之间的零售产品开发和品牌管理协作))

  • Carroll, Katherine Emma
    • Journal of Global Scholars of Marketing Science
    • /
    • v.20 no.3
    • /
    • pp.239-248
    • /
    • 2010
  • This paper describes a collaborative project between academia and industry which focused on improving the marketing and product development strategies for two private label apparel brands of a large regional department store chain in the southeastern United States. The goal of the project was to revitalize product lines of the two brands by incorporating student ideas for new solutions, thereby giving the students practical experience with a real-life industry situation. There were a number of key players involved in the project. A privately-owned department store chain based in the southeastern United States which was seeking an academic partner had recognized a need to update two existing private label brands. They targeted middle-aged consumers looking for casual, moderately priced merchandise. The company was seeking to change direction with both packaging and presentation, and possibly product design. The branding and product development divisions of the company contacted professors in an academic department of a large southeastern state university. Two of the professors agreed that the task would be a good fit for their classes - one was a junior-level Intermediate Brand Management class; the other was a senior-level Fashion Product Development class. The professors felt that by working collaboratively on the project, students would be exposed to a real world scenario, within the security of an academic learning environment. Collaboration within an interdisciplinary team has the advantage of providing experiences and resources beyond the capabilities of a single student and adds "brainpower" to problem-solving processes (Lowman 2000). This goal of improving the capabilities of students directed the instructors in each class to form interdisciplinary teams between the Branding and Product Development classes. In addition, many universities are employing industry partnerships in research and teaching, where collaboration within temporal (semester) and physical (classroom/lab) constraints help to increase students' knowledge and experience of a real-world situation. At the University of Tennessee, the Center of Industrial Services and UT-Knoxville's College of Engineering worked with a company to develop design improvements in its U.S. operations. In this study, Because should be lower case b with a private label retail brand, Wickett, Gaskill and Damhorst's (1999) revised Retail Apparel Product Development Model was used by the product development and brand management teams. This framework was chosen because it addresses apparel product development from the concept to the retail stage. Two classes were involved in this project: a junior level Brand Management class and a senior level Fashion Product Development class. Seven teams were formed which included four students from Brand Management and two students from Product Development. The classes were taught the same semester, but not at the same time. At the beginning of the semester, each class was introduced to the industry partner and given the problem. Half the teams were assigned to the men's brand and half to the women's brand. The teams were responsible for devising approaches to the problem, formulating a timeline for their work, staying in touch with industry representatives and making sure that each member of the team contributed in a positive way. The objective for the teams was to plan, develop, and present a product line using merchandising processes (following the Wickett, Gaskill and Damhorst model) and develop new branding strategies for the proposed lines. The teams performed trend, color, fabrication and target market research; developed sketches for a line; edited the sketches and presented their line plans; wrote specifications; fitted prototypes on fit models, and developed final production samples for presentation to industry. The branding students developed a SWOT analysis, a Brand Measurement report, a mind-map for the brands and a fully integrated Marketing Report which was presented alongside the ideas for the new lines. In future if the opportunity arises to work in this collaborative way with an existing company who wishes to look both at branding and product development strategies, classes will be scheduled at the same time so that students have more time to meet and discuss timelines and assigned tasks. As it was, student groups had to meet outside of each class time and this proved to be a challenging though not uncommon part of teamwork (Pfaff and Huddleston, 2003). Although the logistics of this exercise were time-consuming to set up and administer, professors felt that the benefits to students were multiple. The most important benefit, according to student feedback from both classes, was the opportunity to work with industry professionals, follow their process, and see the results of their work evaluated by the people who made the decisions at the company level. Faculty members were grateful to have a "real-world" case to work with in the classroom to provide focus. Creative ideas and strategies were traded as plans were made, extending and strengthening the departmental links be tween the branding and product development areas. By working not only with students coming from a different knowledge base, but also having to keep in contact with the industry partner and follow the framework and timeline of industry practice, student teams were challenged to produce excellent and innovative work under new circumstances. Working on the product development and branding for "real-life" brands that are struggling gave students an opportunity to see how closely their coursework ties in with the real-world and how creativity, collaboration and flexibility are necessary components of both the design and business aspects of company operations. Industry personnel were impressed by (a) the level and depth of knowledge and execution in the student projects, and (b) the creativity of new ideas for the brands.

A Meta-Analysis on the Effects of Integrated Education Research (통합교육의 효과에 대한 메타분석)

  • Kim, Jiyoung;Park, Eunmi;Park, Jieun;Bang, Dami;Lee, Yoonha;Yoon, Heojoeng
    • Journal of The Korean Association For Science Education
    • /
    • v.35 no.3
    • /
    • pp.403-417
    • /
    • 2015
  • The purpose of this study was to investigate the effectiveness of integrated education research conducted in Korea and to propose a meaningful discussion for further research. Among the studies conducted for last three years, the relevant 161 research articles were selected, and 236 effect sizes were calculated. Effect sizes were analyzed with different dependant variables including creativity, problem solving ability, academic achievement, inquiry skills, creative personality, scientific attitude, and interests. In addition, effect sizes with different moderating variables, such as characteristics of subjects, sample sizes, class types, core disciplines and publication types, were compared. The results are as follows: The overall effect size of integrated education program produced a huge effect (effect size=0.88, U3=81.06%). Integrated education program showed the highest effect size on scientific attitude among other dependant variables. However, all of the other dependant variables represented more than medium size effect size. Integrated program proved to be more effective on kindergarten pupils and gifted students compared to other school levels and regular students. The effect size for group of less then thirty students were larger than other groups. Programs implemented in after school hours were more effective than in regular school hours. Considering the core subject of program, arts-centered integrated programs showed the largest effect size, while all the others showed above medium effect sizes. Finally, doctoral dissertation showed the highest effect size compared to master's thesis and academic journal articles. Conclusions and recommendations for further research were provided.

The impacts of the experince of donation for education to improve the teaching efficacy of pre-technology teacher with Invent touring activity (발명체험 교육기부활동이 예비기술교사의 교수 효능감에 미치는 영향)

  • Choi, Yu-Hyun;Lim, Yun-Jin;Lee, Eun-Sang;Lee, Dong-Won
    • 대한공업교육학회지
    • /
    • v.38 no.2
    • /
    • pp.156-175
    • /
    • 2013
  • The purpose of this study was to verify that the impacts of experience of donation for education to improve the teaching efficacy of pre-technology teacher. The Invention experience of donation for education was performed with Invent-touring sponsored by Chunnam National University Invention Education Center for Teachers and was included by development of creative problem solving program, program execution and evaluation. Research participants were Technology education Majors and minors 20 students. The active locations were D children community center, K alternative school, D Elementary School and D middle school. For the study, various literature researches were reviewed intensively about donation for education and teaching efficacy. The instrument for the study was the modified STEBI(Science Teaching Efficacy Beliefs Instrument) for technology education by 3 experts. This study was designed by single group pre and post test design (One-Group Pretest-Posttest Design) and was conducted by the pre-test and post-test. Check the reliability of the tool was conducted with Cronbach ${\alpha}$ coefficient analysis, pre-test 0.840, post-test 0.746. The analysis of data from the 5% significance level, paired sample t-test was performed using the SPSS 19.0 statistical tool. The results were as follows: 1. Teaching efficacy of pre-technology teachers who participated in the invention experience for educational donation technology has improved. 72. The qualitative study was performed by the interviews with students who participated in. Humanism was positively change and learning opportunity was provided to develop the competence of technology education teacher. Based upon the conclusion of this study, the donation activity for invention education need to use learning strategies for pre-technology teacher to improve teaching efficacy.