• 제목/요약/키워드: crane control

검색결과 400건 처리시간 0.037초

Design of Fuzzy Controller Based on Fuzzy Model for Container Crane System

  • Kim, Maeng-Jun-;Geuntaek-Kang
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 1993년도 Fifth International Fuzzy Systems Association World Congress 93
    • /
    • pp.1250-1253
    • /
    • 1993
  • The fuzzy control theory is applied to control a container crane, which is a very complicated system and controled manually by experts. As reference velocities of trolley and hoist of the container crane, we use those decided by experts, and express them by fuzzy model. We control the crane to follow the reference velocities by using fuzzy controllers. The fuzzy controllers are designed on the container crane. We made a model container crane and applied the suggested method to it

  • PDF

2축 천정 크레인의 무진동 제어 (An anti-swing control for 2 axis overhead cranes)

  • 이호훈;조성근;정연우
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1996년도 한국자동제어학술회의논문집(국내학술편); 포항공과대학교, 포항; 24-26 Oct. 1996
    • /
    • pp.1428-1431
    • /
    • 1996
  • This paper proposes an anti-swing control law for a 2 degrees of freedom overhead crane. The dynamic model of a 2 degrees of freedom crane is highly nonlinear and coupled. The model is linearized and decoupled for each degree of freedom of the crane for small motions of the load about the vertical. Then a decoupled anti-swing control law is designed for each degree of freedom of the crane based on the linearized model. The control law consists of a position control loop and an swing angle control loop. The position loop,. is designed based on the loop shaping method and the swing angle loop is designed via the root locus method. Finally, the proposed anti-swing control law is implemented and evaluated on a 2 degrees of freedom prototype crane.

  • PDF

퍼지 알고리즘을 이용한 비선형 크레인 시스템의 진동방지 및 3차원 위치제어 (Anti-sway and 3D position Control of the Nonlinear Crane System using Fuzzy Algorithm)

  • 이태영;이상룡
    • 한국정밀공학회지
    • /
    • 제16권8호
    • /
    • pp.193-202
    • /
    • 1999
  • Crane operation for transporting heavy loads causes swinging motion at the loads due to crane's acceleration and deceleration. This sway causes the suspension ropes to leave their grooves and leads to possibility of serious damages. So, this swing of the objects is a serious problem and the goal of crane system is transporting to a goal position as soon as possible without the oscillation of the rope. Generally crane is operated by expert's knowledge. Therefore, a satisfactory control method to supress object sway during transport is indispensible. The dynamic behavior of the crane shows nonlinear characteristics. when the length of the rope is changed the crane is time varying system and the design of anti-sway controller is very difficult. In this paper, the nonlinear dynamic model for the industrial overhead crane whose girder, trolley and hoister move simultaneously is derived. and the Fuzzy logic controller based on the expert experiments during acceleration, constant velocity, deceleration and stop position period is proposed to supress the swing motion and control the position of the crane. The performance of the fuzzy controller for the nonlinear crane model is simulated on the personal computer.

  • PDF

퍼지제어기를 이용한 크레인의 진동억제 및 위치제어 (Anti-swing and position control of crane using fuzzy controller)

  • 정승현;박정일
    • 제어로봇시스템학회논문지
    • /
    • 제3권5호
    • /
    • pp.435-442
    • /
    • 1997
  • The roof crane system is used for transporting a variable load to a target position. The goal of crane control system is transporting the load to a goal position as quick as possible without rope oscillation. The crane is generally operated by an expert operator, but recently an automatic control system with high speed and rapid tansportation is required. In this paper, we developed a simple fuzzy controller which has been introduced expert's knowledge base for anti-swing and rapid tranportation to goal position. In particular, we proposed the synthesis reasoning method which synthesizes on the basis of expert knowledge of the angle control input and position control input which are inferenced parallel and simultaneously. And we confirmed that the performance of the developed controller is effective as a result of applying it to crane simulator and also verified whether the proposed synthesis rules have been applied correctly using clustering algorithm from the measured data.

  • PDF

진화전략을 이용한 컨테이너 크레인의 최적제어에 관한 연구 (An Optimal Control of Container Crane Using Evolution Strategy)

  • 이영진;이권순
    • 한국항만학회지
    • /
    • 제12권2호
    • /
    • pp.217-224
    • /
    • 1998
  • During the operation of crane system in container yard, the objective is to transport the load to a goal position as quick as possible without rope oscillation. The container crane is generally operated by an expert operator, but recently an automatic control system with high speed and rapid transportation is required. Therefore, we developed an optimal controller which has to control the crane system with disturbances. In this paper, we present a design of optima 2-DOF PID controller for the control of gantry crane which has to control swing motion and trolley position. We used evolution strategy(ES) to tune the parameters of 2-DOF PID controller. It was compared with general PID controller. The computer simulations show that the proposed method has better performances than the other method.

  • PDF

LonWorks네트워크를 이용한 야드 크레인 구동용 전동기 위치제어 (Position Control of Motor for Yard Crane Drive Using Lonworks network)

  • 전태원;최명규;김동식;김홍근;노희철
    • 대한전기학회논문지:전기기기및에너지변환시스템부문B
    • /
    • 제50권1호
    • /
    • pp.37-44
    • /
    • 2001
  • This paper describes the position control method in yard crane drive system using Lonworks network, which is a leading industrial control network. The network is composed of host computer and three motor drive systems for both gantry and trolley position controls of both gantry and trolley are controlled with the simulator of yard crane, the size of which is about 1/10 with the real yard crane.

  • PDF

창고 Crane 무인화 시스템 개발 및 적용 (Development and application of unmanned crane system in the warehouse)

  • 박남수;김태진
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1996년도 한국자동제어학술회의논문집(국내학술편); 포항공과대학교, 포항; 24-26 Oct. 1996
    • /
    • pp.1079-1082
    • /
    • 1996
  • Automatic control systems for warehouse composed of unmanned crane system and vision system. Unmanned crane system is introduced to reject oscillations of a load suspended from a trolley at a moment of its arrival at its target position. And vision system is applied to find out the coordinates of coils on trucks using image processing.

  • PDF

무인자동화를 위한 컨테이너크레인의 제어구조 (Control Architecture for Automated Container Cranes)

  • 김형진;홍경태;홍금식
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2004년도 추계학술대회 논문집
    • /
    • pp.746-751
    • /
    • 2004
  • Demands for higher productivity in container terminal environments continues to escalate consideration of equipment upgrades. And then transportation of containers using the automated container crane becomes more and more important for productivity enhancements. Introducing a hybrid control architecture to the container crane, it provides a effective means to the automated operation of the container crane. This paper addresses the methodology for automation of container cranes. In addition, this paper proposes a new control architecture for the automated container crane and explains each component of that architecture. The control architecture is composed of a deliberative control layer, a sequencing layer, and a reactive control layer. The proposed architecture is applied to a dual-hoist double-trolley container crane.

  • PDF

Anti-sway and Position 3D Control of the Nonlinear Crane System using Fuzzy Algorithm

  • Lee, Tae-Young;Lee, Sang-Ryong
    • International Journal of Precision Engineering and Manufacturing
    • /
    • 제3권1호
    • /
    • pp.66-75
    • /
    • 2002
  • The crane operation used fur transporting heavy loads causes a swinging motion with the loads due to the crane\`s acceleration and deceleration. This sway causes the suspension ropes to leave their grooves and can cause serious damage. Ideally, the purpose of a crane system is to transport loads to a goal position as soon as possible without any oscillation of the rope. Currently, cranes are generally operated based on expert knowledge alone, accordingly, the development of a satisfactory control method that can efficiently suppress object sway during transport is essential. The dynamic behavior of a crane shows nonlinear characteristics. When the length of the rope is changed, a crane becomes a time-varying system thus the design of an anti-sway controller is very difficult. In this paper, a nonlinear dynamic model is derived for an industrial overhead crane whose girder, trolley, and hoister move simultaneously. Furthermore, a fuzzy logic controller, based on expert experiments during acceleration, constant velocity, deceleration, and stop position periods is proposed to suppress the swing motion and control the position of the crane. Computer simulation is then used to test the performance of the fuzzy controller with the nonlinear crane model.

Boundary Control of Container Crane;Two-Stage Control of a Container Crane as Nonflexible and Flexible Cable

  • Park, Hahn;Hong, Keum-Shik
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2004년도 ICCAS
    • /
    • pp.153-158
    • /
    • 2004
  • In this paper, we proposed a two-stage control of the container crane. The first stage control is time-optimal control for the purpose of fast trolley traveling. With suitable trolley velocity patterns, the sway which is generated during trolley moving is minimized. At the second stage control feedback control law is investigated for the quick suppression of residual vibration after the trolley motion. For more practical system, the container crane system is modeled as a partial differential equation (PDE) system with flexible cable. The dynamics of the cable is derived as a moving system with tension caused by payload using Hamilton's principle for the systems. A control law based upon the Lyapunov's method is derived. It is revealed that a time-varying control force and a suitable passive damping at the actuator can successfully suppress the transverse vibrations.

  • PDF