• Title/Summary/Keyword: crane accidents

Search Result 67, Processing Time 0.025 seconds

Design and Implementation of Miniaturized Auto Shackle using Duplex RF Transmission (양방향 RF 통신을 이용한 초소형 오토 샤클 설계 및 구현)

  • Kang, Suk-Youb;Hwang, In-Kyu
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.32 no.10A
    • /
    • pp.1050-1056
    • /
    • 2007
  • In order to set up a steel frame at every construction site, it is necessary to attach a shackle to a crane to move steel frame beams and columns(H beams). The shackle used for this purpose must be removed manually from a higher place, which causes the risk of safety accidents to increase, work efficiency to decrease, and construction costs to rise. In this study, micro-mini, super lightweight, lower power consumptive, and cheaper auto-shackle with two-way RF communication, which can be used practically at construction site is designed and developed. The developed auto-shackle is able to have excellent remote monitoring and controlling functions, by adopting new operating principles and structures different from the existing one. The results of the study reveal that the auto-shackle can be applied for the purpose of remote controlling of various construction equipments and speed up the advancement of construction equipments.

Analysis of Hebei Spirit Collision Accident by Simulation (시뮬레이션에 의한 허베이스피리트호-삼성바지선 충돌사고 분석)

  • Kim, Sun-Young;Lee, Gyeong-Joong;Park, Se-Kil;Kim, Yeon-Gyu;Lee, Moon-Jin;Son, Nam-Sun;Gong, In-Young;Kim, Mi-Hyun
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2011.06a
    • /
    • pp.85-86
    • /
    • 2011
  • On 7 December 2007, the Hebei Spirit, a 260,000 dwt VLCC, anchored near Korea's Daesan Port, was collided with a passing crane-carrying barge Samsung1, which was under tow of two tugs Samsung T5 and Samho T3. In this study, the behaviour of Hebei Spirit at the time of the accident has been reproduced and analyzed by simulation. This study precedes the study for the investigation of any available countermeasures for Hebei Spirit to prevent the accident. The simulation has been done only for Hebei Spiri and the motion of Samsung barge is just given with recorded AIS data. Dynamic characteristics of Hebei Spirit have been modeled based on empirical data and her sea trial data. Effects of current, wave and wind are also estimateed using empirical formula. Considering uncertainty of environmental condition and control of Hebei Spirit, simulation has been done by varying engine control method and holding power coefficients of the anchor. Finally, based on simulations, the most plausible scenario on the state of anchor and engine control could cause real accidents.

  • PDF

The Optimization Algorithm for Wall Bracing Supports of Tower Cranes (타워크레인의 횡지지 최적설계 알고리즘 개발)

  • Lee, Hyun-Min;Ho, Jong-Kwan;Kim, Sun-Kuk
    • Korean Journal of Construction Engineering and Management
    • /
    • v.11 no.1
    • /
    • pp.130-141
    • /
    • 2010
  • Poor expertise in equipment operation and installation, coupled with unpredictable natural disaster, usually directly leads to disastrous accidents of large lifting equipment such as tower cranes. For example, 52 tower cranes fell down due to the unstable support in Korea at the attack of Typhoon "Maemi" in 2003, which damaged property and caused loss of life. In high-rise construction projects, top-slewing or luffing-jib tower cranes needs checking the stability of lateral-support in addition to the bottom support such as the foundation. In this study, the optimization algorithm for lateral-support of tower cranes is conducted, which is expected to enhance the structural stability of tower cranes and save the cost in conflict with the safety.

Computational Modelling to Predict the Welding Deformation in Steel Structures (용접변형예측을 위한 용접부 수치 모델링)

  • Park, Jeong-Ung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.8 no.1
    • /
    • pp.96-102
    • /
    • 2007
  • Welding deformation causes critical problems under construction and in use of steel structures by varying the magnitude of the steel structures and deteriorating mechanic strength. Existing method to construct steel structures in civil engineering needs preassembly process for a part of or the whole structures on a broad space to examine the size of structures inevitably varied in the process of welding (assembly process). It leads to waste of time, space and human efforts, worry of safety accidents with the characteristic of the work to be performed on a high place, and non-efficiency and non-economy by using such supplementary equipments as crane. This paper, to remove the needless preassembly process by pre-estimating welding deformation produced under construction of large steel structures, devises a method modeling welded part for applying the equivalence load method and examines the effects of welding sequence and self weight on welding deformation by the method.

  • PDF

Design and Implementation of IoT Platform-based Digital Twin Prototype (IoT 플랫폼 기반 디지털 트윈 프로토타입 설계 및 구현)

  • Kim, Jeehyeong;Choi, Wongi;Song, Minhwan;Lee, Sangshin
    • Journal of Broadcast Engineering
    • /
    • v.26 no.4
    • /
    • pp.356-367
    • /
    • 2021
  • With the recent development of IoT and artificial intelligence technology, research and applications for optimization of real-world problems by collecting and analyzing data in real-time have increased in various fields such as manufacturing and smart city. Representatively, the digital twin platform that supports real-time synchronization in both directions with the virtual world digitized from the real world has been drawing attention. In this paper, we define a digital twin concept and propose a digital twin platform prototype that links real objects and predicted results from the virtual world in real-time by utilizing the oneM2M-based IoT platform. In addition, we implement an application that can predict accidents from object collisions in advance with the prototype. By performing predefined test cases, we present that the proposed digital twin platform could predict the crane's motion in advance, detect the collision risk, perform optimal controls, and that it can be applied in the real environment.

A Study on the Construction Equipment Object Extraction Model Based on Computer Vision Technology (컴퓨터 비전 기술 기반 건설장비 객체 추출 모델 적용 분석 연구)

  • Sungwon Kang;Wisung Yoo;Yoonseok Shin
    • Journal of the Society of Disaster Information
    • /
    • v.19 no.4
    • /
    • pp.916-923
    • /
    • 2023
  • Purpose: Looking at the status of fatal accidents in the construction industry in the 2022 Industrial Accident Status Supplementary Statistics, 27.8% of all fatal accidents in the construction industry are caused by construction equipment. In order to overcome the limitations of tours and inspections caused by the enlargement of sites and high-rise buildings, we plan to build a model that can extract construction equipment using computer vision technology and analyze the model's accuracy and field applicability. Method: In this study, deep learning is used to learn image data from excavators, dump trucks, and mobile cranes among construction equipment, and then the learning results are evaluated and analyzed and applied to construction sites. Result: At site 'A', objects of excavators and dump trucks were extracted, and the average extraction accuracy was 81.42% for excavators and 78.23% for dump trucks. The mobile crane at site 'B' showed an average accuracy of 78.14%. Conclusion: It is believed that the efficiency of on-site safety management can be increased and the risk factors for disaster occurrence can be minimized. In addition, based on this study, it can be used as basic data on the introduction of smart construction technology at construction sites.

A Study on the Importance of Real-Name System for Safety Management through Investigation of Construction Sites (건설현장 실태조사를 통한 안전관리 실명제 중요성에 관한 연구)

  • Yeon Cheol Shin;Sang Hyun Kim;Yu Mi Moon
    • Journal of the Society of Disaster Information
    • /
    • v.18 no.4
    • /
    • pp.817-827
    • /
    • 2022
  • The real-name safety management system is to indicate "safety" after inspection by construction personnel before workers use it for the purpose of preventing safety accidents caused by unsafe conditions in temporary facilities and temporary constructions installed at construction sites. Purpose: By implementing the real-name system for safety management at construction sites, the objective is to respond to the "Severe Accident Punishment Act" and to improve the level of safety management at the same time. Method: In this study, a hierarchical analysis model was produced through previous studies of actual conditions such as types of safety incidents and causality at construction sites. The AHP model was used to calculate integrated weights and rankings with a pairwise comparison questionnaire for experts. Conclusion: As a result of the analysis of the upper classes, construction machinery was evaluated the highest, and real-name management system was evaluated the lowest. As a result of the lower-level analysis, it was considered that opening doors for safety facility management, tower cranes for construction equipment, management under the "Occupational Safety and Health Act" under the real-name management system, and CEO duties for safety management organizations were the most important.