• Title/Summary/Keyword: cracking damage

Search Result 390, Processing Time 0.03 seconds

Effect of creep-fatigue interaction on high temperature low cycle fatigue strength and fracture behavior of STS 316 stainless steels (STS 316鋼 의 高溫低사이클 疲勞强度 와 破壞擧動 에 미치는 크리이프 - 疲勞 相互作용 의 影響)

  • 오세욱;이규용;김중완;문무경
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.9 no.2
    • /
    • pp.140-149
    • /
    • 1985
  • Fully reversed push-pull low cycle fatigue tests under strain control of trapezoid cyclic mode have been conducted in air at temperature of 550.deg. C and with frequency of 0.5 cpm on the domestic stainless steel STS 316 after solution treatment for 1 hour at 1100.deg. C. As an experimental equipment for high temperature fatigue tests, an electric servo-hydraulic fatigue machine(Instron model 1350) was used. This paper presents the effects of creep hold time and plastic strain range on push-pull high temperature low cycle fatigue life and fracture behavior. The fracture surfaces were observed by means of the scanning electron microscope. The results are as follows. (1) The fatigue life decreases with increase of the plastic strain range equal hold time and also decreases as the hold time is getting longer. (2) The frequency modified damage function can predict fatigue life by incorporating a variation of Coffin's frequency modified approach into damage function. (3) The ratios of creep damage and fatigue damage can be calculated by using he linear accumulation damage concept and the ratio of creep damage increases as the hold time is getting longer. (4) At the creep hold time of 5 minutes and the strain range of 2.0%, the fracture mode was intergranular fracture and striations were hardly observed. In this case, the intergranular cracking was originated in void type('.gamma.' type) cracking.

Full scale tests of RC joints with minor to moderate seismic damage repaired using C-FRP sheets

  • Karayannis, Chris G.;Golias, Emmanuil
    • Earthquakes and Structures
    • /
    • v.15 no.6
    • /
    • pp.617-627
    • /
    • 2018
  • After earthquakes FRP sheets are often used for the rehabilitation of damaged Reinforced Concrete (RC) beamcolumn connections. Connections with minor to moderate damage are often dealt with by applying FRP sheets after a superficial repair of the cracks using resin paste or high strength mortar but without infusion of thin resin solution under pressure into the cracking system. This technique is usually adopted in these cases due to the fast and easy-to-apply procedure. The experimental investigation reported herein aims at evaluating the effectiveness of repairing the damaged beam-column connections using FRP sheets after a meticulous but superficial repair of their cracking system using resin paste. The investigation comprises experimental results of 10 full scale beam-column joint specimens; five original joints and the corresponding retrofitted ones. The repair technique has been applied to RC joints with different joint reinforcement arrangements with minor to severe damage brought about by cyclic loading for the purposes of this work. Aiming at quantitative concluding remarks about the effectiveness of the repair technique, data concerning response loads, loading stiffness and energy absorption values have been acquired and commented upon. Furthermore, comparisons of damage index values and values of equivalent viscous damping, as obtained during the test of the original specimens, with the corresponding ones observed in the loading of the repaired ones have also been evaluated and commented. Based on these comparisons, it is deduced that the technique under investigation can be considered to be a rather satisfactory repair technique for joints with minor to moderate damage taking into account the rapid, convenient and easy-to-apply character of its application.

Experimental and numerical analysis of corrosion-induced cover cracking in reinforced concrete sample

  • Richard, Benjamin;Quiertant, Marc;Bouteiller, Veronique;Delaplace, Arnaud;Adelaide, Lucas;Ragueneau, Frederic;Cremona, Christian
    • Computers and Concrete
    • /
    • v.18 no.3
    • /
    • pp.421-439
    • /
    • 2016
  • Corrosion of embedded reinforcing bars is recognized as being the major cause of deterioration of reinforced concrete structures. With regard to maintenance strategies of concrete nuclear structures, the monitoring of cracking remains of primary importance. Recently, authors have developed a post-treatment technique to extract crack features from continuous computations. In this paper, such technique is applied to carry out a numerical analysis of an accelerated corrosion test. Obtained results allow highlighting specific propagation and failure mechanisms that characterize corrosion-induced cracking.

Corrosion Fatigue of Austenitic Stainless Steel in Different Hot Chloride Solutions

  • Visser, A.;Mori, G.;Panzenbock, M.;Pippan, R.
    • Corrosion Science and Technology
    • /
    • v.14 no.4
    • /
    • pp.172-176
    • /
    • 2015
  • Austenitic stainless steel was investigated under cyclic loading in electrolytes with different chloride contents and pH and at different temperatures. The testing solutions were 13.2 % NaCl (80,000 ppm $Cl^-$) at $80^{\circ}C$and 43 % $CaCl_2$ (275,000 ppm $Cl^-$) at $120^{\circ}C$. In addition to S-N curves in inert and corrosive media, the fracture surfaces were investigated with a scanning electron microscope (SEM) to analyse the type of attack. The experimental results showed that a sharp decrease in corrosion fatigue properties can be correlated with the occurrence of stress corrosion cracking. The correlation of occurring types of damage in different corrosion systems is described.

A Study on Thermomechanical Analysis of Laser Ablation on Cr thin film (크롬박막의 레이저 어블레이션에서 열적.기계적 해석에 관한 연구)

  • 윤경구;장원석;이성국;김재구;나석주
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2001.04a
    • /
    • pp.914-917
    • /
    • 2001
  • Single-shot laser damage of thin Cr films on glass substrates has been studied to understand the cracking and peeling-off mechanism. A numerical model is developed for the calculation of transient heat transfer and thermal stresses in Cr films during excimer laser irradiation and cooling, the transient temperature, and the stress-strain fields are analyzed by using a three-dimensional finite-element model of heat flow. According to the numerical analysis for the experimentally determined cracking and peeling-off conditions, cracking is found to be the result of the tensile brittle fracture due to the excessive thermal stresses formed during the cooling process, while peeling-off is found to be the combined result of films bulging from the softened glass surface at higher temperature and the tensile brittle fracture during the cooling process.

  • PDF

Diagnosis of Crack Occurrence of Very-Early Strength Latex-Modified Concretes through Field Tests (현장실험을 통한 VES-LMC 균열발생 원인분석)

  • Choi, Pan-Gil;Lee, Bong-Hak
    • Journal of Industrial Technology
    • /
    • v.26 no.A
    • /
    • pp.139-146
    • /
    • 2006
  • Many concrete bridge decks develop transverse cracking shortly after construction. These cracks accelerate corrosion of reinforcing steel and lead to concrete deterioration, damage to components beneath the deck, unsightly appearance. These cracks shorten the service life and increase maintenance costs of bridge structures. In this study, VES-LMC overlay, which provides the same benefits as a conventional overlay, is designed to cure very quickly. Although the materials for VES overlays are more expensive, the cost is more than offset by the savings on traffic control and work zone safety measures. Otherwise, reaction of hydration occurs very rapidly in beginning step(concrete placing). As a results, thermal cracking can be occur by thermal stress in accordance with hydration-heat The purpose of this study was to estimate diagnosis of crack occurrence of VES-LMC through field tests at early-age.

  • PDF

Cracking Behavior of Cement and Concrete Damaged by High Temperature of 800℃ (800℃ 조건에서의 시멘트 경화체의 균열 특성)

  • Ji, Woo-Ram;Park, Ji Woong;Shin, Ki Don;Lee, Gun-Cheol
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2017.05a
    • /
    • pp.26-27
    • /
    • 2017
  • In this study, the cracking characteristics of cured pastes at 800℃ were investigated by X-ray CT. The test specimens were fabricated with and without aggregate, and the heating rate condition was applied at rapid heating (10.0℃/min). It is considered that the rapid heating condition does not cause a temperature gradient phenomenon because the temperature difference between the surface and the center of the sample is small due to a low heating rate unlike an actual fire. The cracking condition of the specimens without aggregate was more severe than that of specimens with aggregate.

  • PDF

Monitoring of Low-velocity Impact Damage Initiation of Gr/Ep Panel Using Piezoelectric Thin Film sensor (압전필름센서를 이용한 복합재 평판의 저속충격 손상개시 모니터링)

  • 이관호;박찬익;김인걸;이영신
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2001.10a
    • /
    • pp.174-178
    • /
    • 2001
  • The piezoelectric thin film sensor can be used to interpret variations in structural and material properties, e.g. for structural integrity monitoring and assessment. To illustrate one of this potential benefit, PVDF film sensors are used for monitoring impact damage initiation in Gr/Ep composite panel. Both PVDF film sensors and strain gages are surface mounted to the Gr/Ep specimens. A series of impact test at various impact energy by changing impact mass and height is performed on the instrumented drop weight impact tester. The sensor responses are carefully examined to predict the onset of impact damage such as matrix cracking, delamination, and fiber breakage, etc. Test results show that the particular waveforms of sensor signals implying the damage initiation and development are detected above the damage initiation impact energy. As expected, the PVDF film sensor is found to be more sensitive to impact damage initiation event than the strain gage.

  • PDF

Modeling of reinforced concrete structural members for engineering purposes

  • Mazars, Jacky;Grange, Stephane
    • Computers and Concrete
    • /
    • v.16 no.5
    • /
    • pp.683-701
    • /
    • 2015
  • When approached using nonlinear finite element (FE) techniques, structural analyses generate, for real RC structures, large complex numerical problems. Damage is a major part of concrete behavior, and the discretization technique is critical to limiting the size of the problem. Based on previous work, the ${\mu}$ damage model has been designed to activate the various damage effects correlated with monotonic and cyclic loading, including unilateral effects. Assumptions are formulated to simplify constitutive relationships while still allowing for a correct description of the main nonlinear effects. After presenting classical 2D finite element applications on structural elements, an enhanced simplified FE description including a damage description and based on the use of multi-fiber beam elements is provided. Improvements to this description are introduced both to prevent dependency on mesh size as damage evolves and to take into account specific phenomena (permanent strains and damping, steel-concrete debonding). Applications on RC structures subjected to cyclic loads are discussed, and results lead to justifying the various concepts and assumptions explained.

Study on the Causes of Premature Cracking of Epoxy Coatings for Ship's Ballast Tanks

  • Song, Eun Ha;Lee, Ho Il;Chung, Mong Kyu;Lee, Seong Kyun;Baek, Kwang Ki
    • Corrosion Science and Technology
    • /
    • v.5 no.2
    • /
    • pp.69-76
    • /
    • 2006
  • Premature cracking of the epoxy coatings applied on ship's ballast tanks(BT) can lead to damage of ship's hulls. To avoid this, it's important to have clear understanding of the underlying mechanism and primary factors of the coating crack. In this study, the efforts were made to clarify the integrated effects of main factors, i.e., initial coating shrinkage, thermally induced strain, steel-structural strain and the intrinsic coating flexibility at the initial and after aging, to the early cracking phenomena of epoxy coating in the ship's ballast tank. The coating crack is caused by combination of thermal stress, structural stress, and internal stresses which is closely related to chemical structures of the coatings. On the other hand, thermal stresses and dimensional stabilities would rarely play a major role in coating crack for ballast tank coatings with rather large flexibility. Crack resistance of the coatings at early stages can be estimated roughly by measuring internal stress, FT-IR and $T_g$ value of the coatings. A new screening test method was also proposed in this study, which can be possibly related to the long-term resistance of epoxy-based paints to cracking.