DOI QR코드

DOI QR Code

Modeling of reinforced concrete structural members for engineering purposes

  • Received : 2014.12.23
  • Accepted : 2015.11.01
  • Published : 2015.11.25

Abstract

When approached using nonlinear finite element (FE) techniques, structural analyses generate, for real RC structures, large complex numerical problems. Damage is a major part of concrete behavior, and the discretization technique is critical to limiting the size of the problem. Based on previous work, the ${\mu}$ damage model has been designed to activate the various damage effects correlated with monotonic and cyclic loading, including unilateral effects. Assumptions are formulated to simplify constitutive relationships while still allowing for a correct description of the main nonlinear effects. After presenting classical 2D finite element applications on structural elements, an enhanced simplified FE description including a damage description and based on the use of multi-fiber beam elements is provided. Improvements to this description are introduced both to prevent dependency on mesh size as damage evolves and to take into account specific phenomena (permanent strains and damping, steel-concrete debonding). Applications on RC structures subjected to cyclic loads are discussed, and results lead to justifying the various concepts and assumptions explained.

Keywords

References

  1. Bazant, Z.P. and Oh, B.H. (1983), "Crack band theory for fracture of concrete", Mater. Struct., 16(3), 155-177.
  2. Bazant, Z.P. (2002), "Concrete fracture models: testing and practice", Eng. Fract. Mech., 69, 165-205. https://doi.org/10.1016/S0013-7944(01)00084-4
  3. Braga, F., Gigliotti, R., Laterza, M., D'Amato, M. and Kunnath, S. (2012), "Modified steel bar model incorporating bondslip for seismic assessment of concrete structures", J. Struct. Eng., ASCE, 138(11), 1342-1350 https://doi.org/10.1061/(ASCE)ST.1943-541X.0000587
  4. Capdevielle, S., Grange, S., Dufour, F. and Desprez, C. (2015), "A multifiber beam model coupling torsional warping and damage for reinforced concrete structures", Eur. J. Envir. Civil Eng., doi:10.1080/19648189.2015.1084384. (accepted for publication)
  5. Crambuer, R.B., Richard, B., Ile, F. and Ragueneau, F. (2013), "Experimental characterization and modeling of energy dissipation in reinforced concrete beams subjected to cyclic loading", Eng. Struct., 56(0), 919-934. https://doi.org/10.1016/j.engstruct.2013.06.024
  6. EN1992-2 and Eurocode 2 (2004), Design of concrete structures.
  7. Hillerborg, A., Modeer, M. and Peterssonn, P.E. (1976), "Analysis of crack formation and growth in concrete by means of fracture mechanics and finite elements", Cement Concrete Res., 6, 773-782. https://doi.org/10.1016/0008-8846(76)90007-7
  8. Jirasek, M. (2004), "Non-local damage mechanics with application to concrete", French J. Civil Eng., 8, 683-707.
  9. Kotronis, P. and Mazars, J. (2005), "Simplified modelling strategies to simulate the dynamic behavior of R/C walls", J. Earthq. Eng., 9(2), 285-306. https://doi.org/10.1080/13632460509350543
  10. Kupfer, H.B. and Gerstle, K.H. (1973), "Behavior of concrete under biaxial stresses", J. Eng. Mech., 99(4), 853-866.
  11. Grange, S. (2015a), ATLAS - A Tool and Language for Simplified Structural Solution Strategy - Internal report, 3SR-Lab, Grenoble.
  12. Grange, S. (2015b), "Modeles multi-echelles et algorithmes pour les simulations dynamiques: application a la vulnerabilite sismique des structures", Habilitation a diriger des recherches, Universite de Grenoble-Alpes.
  13. La Borderie, C., Mazars, J. and Pijaudier-Cabot, G. (1992), "Response of plain and reinforced concrete structures under cyclic loadings", A.C.I Special Publication, Eds. W. Gerstle and Z.P. Bazant, SP-134, 147-172.
  14. Lee, J. and Fenves, G.L. (1998), "Plastic-damage model for cyclic loading of concrete structures", J. Eng. Mech., 124, 892. https://doi.org/10.1061/(ASCE)0733-9399(1998)124:8(892)
  15. Lemaitre, J. and Chaboche, J.L. (1990), Mechanics of Solid Mater., Cambridge University Press.
  16. Lubliner, J., Oliver, J., Oller, S. and Onate, E. (1989), "A plastic-damage model for concrete", Int. J. Solid. Struct., 25(3), 299-326. https://doi.org/10.1016/0020-7683(89)90050-4
  17. Mazars, J. (1986), "A description of micro and macroscale damage of concrete structure", Eng. Fract. Mech., 25, 729-737. https://doi.org/10.1016/0013-7944(86)90036-6
  18. Mazars, J. and Coste, J.F. (2014), "CEOS.fr National Project : behaviour and assessment of special structures in relation with shrinkage and creep", The French Technology of Concrete CEB-Fib, Mumbai.
  19. Mazars, J., Hamon, F. and Grange, S. (2015), "A new 3D damage model for concrete under monotonic, cyclic and dynamic loading", Mater. Struct., 48, 3779-3793. https://doi.org/10.1617/s11527-014-0439-8
  20. MC2010 Model Code (2010), fib Bulletin, Final Draft (2011).
  21. Pijaudier-Cabot, G. and Bazant, Z.P. (1987), "Nonlocal damage theory", J. Eng. Mech., ASCE, 113(10), 1512-1533. https://doi.org/10.1061/(ASCE)0733-9399(1987)113:10(1512)
  22. Planas, J., Elices, M. and Guinea, G.V. (1992), "Measurement of the fracture energy using three-point bend tests: Part 2, influence of bulk energy dissipation", Mater. Struct., 25, 305-316. https://doi.org/10.1007/BF02472671
  23. Pontiroli, C., Rouquand, A. and Mazars, J. (2010), "Predicting concrete behaviour from quasi-static loading to hypervelocity impact", Eur. J. Envir. Civil Eng., 14(6-7), 703-727. https://doi.org/10.1080/19648189.2010.9693259
  24. Ragueneau, F., Lebon, G. and Delaplace, A. (2010), "Analyse experimentale du comportement cyclique de poutres en beton arme", LMT Internal report, October.
  25. Richard, B., Ragueneau, F., Lucas, A. and Cremona, C. (2011), "A multi-fiber approach for modelling corroded reinforced concrete structures", Eur. J. Mech A-Solid., 30, 950-961. https://doi.org/10.1016/j.euromechsol.2011.06.002
  26. Simo, J. and Ju, J. (1987), "Strain- and stress-based continuum damage models-I formulation", Int. J. Solid. Struct., 23, 821-840. https://doi.org/10.1016/0020-7683(87)90083-7
  27. Rospars, C. and Chauvel, D. (2014), "CEOS.fr experimental programme and reference specimen tests results", Eur. J. Envir. Civil Eng.., 18(7-8), 738-753. https://doi.org/10.1080/19648189.2014.912163
  28. Wang, X. and Liu, X. (2004), "Modeling bond strength of corroded reinforcement without stirrups", Cement Concrete Res., 34, 1331-1339. https://doi.org/10.1016/j.cemconres.2003.12.028

Cited by

  1. Simplified strategies based on damage mechanics for concrete under dynamic loading vol.375, pp.2085, 2017, https://doi.org/10.1098/rsta.2016.0170
  2. Simplified Modeling Strategy for the Thermomechanical Analysis of Massive Reinforced Concrete Structures at an Early Age vol.8, pp.3, 2018, https://doi.org/10.3390/app8030448
  3. Deformation and stress behavior analysis of high concrete dam under the effect of reservoir basin deformation vol.18, pp.6, 2016, https://doi.org/10.12989/cac.2016.18.6.1153
  4. An approach of evaluation and mechanism study on the high and steep rock slope in water conservancy project vol.19, pp.5, 2017, https://doi.org/10.12989/cac.2017.19.5.527