• Title/Summary/Keyword: cracked beam

Search Result 192, Processing Time 0.024 seconds

The Effect of Moving Mass on Dynamic Behavior of Cracked Cantilever Beam on Elastic Foundations (탄성기초 위에 놓인 크랙 외팔보의 동특성에 미치는 이동질량의 영향)

  • Ahn, Sung-Jin;Son, In-Soo;Yoon, Han-Ik
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.05a
    • /
    • pp.826-831
    • /
    • 2005
  • In this paper the effect of moving mass on dynamic behavior of cracked cantilever beam on elastic foundations is presented. Based on the Euler-Bernoulli beam theory, the equation of motion can be constructed by using the Lagrange's equation. The crack section is represented by a local flexibility matrix connecting two undamaged beam segments. That is, the crack is modelled as a rotational spring. This flexibility matrix defines the relationship between the displacements and forces across the crack section and is derived by applying fundamental fracture mechanics theory. The crack is assumed to be in the first mode of fracture. As the depth of the crack is increased, the tip displacement of the cantilever beam is increased. When the crack depth is constant the frequency of a cracked beam is proportional to the spring stiffness.

  • PDF

Effect of Moving Mass on Dynamic Behavior of Cracked Cantilever Beam on Elastic Foundations (탄성기초 위에 놓인 크랙 외팔보의 동특성에 미치는 이동질량의 영향)

  • Ahn, Sung-Jin;Son, In-Soo;Yoon, Han-Ik
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.15 no.10 s.103
    • /
    • pp.1195-1201
    • /
    • 2005
  • In this paper, the effect of a moving mass on dynamic behavior of the cracked cantilever beam on elastic foundations is presented. Based on the Euler-Bernoulli beam theory, the equation of motion can be constructed by using the Lagrange's equation. The crack section is represented by a local flexibility matrix connecting two undamaged beam segments. That is, the crack is modelled as a rotational spring. This flexibility matrix defines the relationship between the displacements and forces across the crack section and is derived by applying fundamental fracture mechanics theory The crack is assumed to be in the first mode of fracture. As the depth of crack is increased, the tip displacement of the cantilever beam is Increased. When the depth of crack is constant, the frequency of a cracked beam is proportional to the spring stiffness.

Fault Detection Method of Pipe-type Cantilever Beam with a Tip Mass (말단질량을 갖는 원형강관 캔틸레버 보의 결함탐지기법)

  • Lee, Jong Won
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.25 no.11
    • /
    • pp.764-770
    • /
    • 2015
  • A crack identification method using an equivalent bending stiffness and natural frequency for cracked beam is presented. Modal properties of cantilever beam with a tip mass is identified by applying the boundary conditions to a general solution. An equivalent bending stiffness for cracked beam based on an energy method is used to identify natural frequencies of cantilever thin-walled pipe with a tip mass, which has a through-the-thickness crack, subjected to bending. The identified natural frequencies of the cracked beam are used in constructing training patterns of neural networks. Then crack location and size are identified using a committee of the neural networks. Crack detection was carried out for an example beam using the proposed method, and the identified crack locations and sizes agree reasonably well with the exact values.

A Study about the Damage Model of a Cantilever Beam with Open Crack Generated in Whole Breadth of the Beam (보의 폭 전체에서 발생된 열린 균열을 갖는 외팔보의 손상모델에 관한 연구)

  • Huh, Young-Cheol;Kim, Jae-Kwan;Park, Seong-Hwan
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.17 no.10
    • /
    • pp.936-945
    • /
    • 2007
  • We studied the influences of open cracks in free vibrating beam with rectangular section using a numerical model. The crack was assumed to be single and always open during the free vibration and equivalent bending stiffness of a cracked beam was calculated based on the strain energy balance. By Galerkin's method, the frequencies of cantilever beam could be obtained with respect to various crack depths and locations. Also, the experiments on the cracked beams were carried out to find natural frequencies. The cracks were initiated at five locations and the crack depths were increased by five steps at each location. The experimental results were compared with the numerical results and the comparison results were discussed.

Modal Property Estimation of Tapered Cantilever Pipe-type Cracked Beam (테이퍼 캔틸레버 원형강관 균열보의 모드특성 추정)

  • Lee, Jong Won;Kim, Sang Ryul;Kim, Bong Ki
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.27 no.5
    • /
    • pp.361-368
    • /
    • 2014
  • Modal properties for tapered cantilever pipe-type beam is identified by applying the boundary conditions to a general solution for tapered beam. A bending stiffness for cracked beam is constructed based on an energy method for tapered cantilever thin-walled pipe, which has a through-the-thickness crack, subjected to bending. Then the natural frequencies and mode shapes of a tapered cantilever thin-walled cracked pipe are identified. It can be found that the phenomenon of the bending stiffness distribution along the beam length of the cracked beam is quite reasonable, the natural frequencies are decreased as the crack sizes are increased, and the mode shapes are changed due to the crack. This results may be used to the vibration-based crack identification for the tapered cantilever pipe-type tower structures.

Crack Identification of Euler-Bernoulli Beam Using the Strain Energy Method (에너지 방법을 이용한 Euler-Bernoulli 보의 손상 규명)

  • Huh, Young-Cheol;Kim, Jae-Kwan;Kim, Byung-Hyun
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.11a
    • /
    • pp.396-400
    • /
    • 2006
  • We studied the influences of open cracks in free vibrating beam with rectangular section using a numerical model. The crack was assumed to be single and always open during the free vibration and equivalent bending stiffness of a cracked beam was calculated based on the strain energy balance. By Galerkin's method, the frequencies of cantilever beam could he obtained with respect to various crack depths and locations. Also, the experiments on the cracked beams were carried out to find natural frequencies. The cracks were initiated at five locations and the crack depths were increased by five steps at each location. The experimental results were compared with the numerical results and the comparison results were discussed.

  • PDF

Free vibration analysis of edge cracked symmetric functionally graded sandwich beams

  • Cunedioglu, Yusuf
    • Structural Engineering and Mechanics
    • /
    • v.56 no.6
    • /
    • pp.1003-1020
    • /
    • 2015
  • In this study, free vibration analysis of an edge cracked multilayered symmetric sandwich beams made of functionally graded materials are investigated. Modelling of the cracked structure is based on the linear elastic fracture mechanics theory. Material properties of the functionally graded beams change in the thickness direction according to the power and exponential laws. To represent functionally graded symmetric sandwich beams more realistic, fifty layered beam is considered. Composition of each layer is different although each layer is isotropic and homogeneous. The considered problem is carried out within the Timoshenko first order shear deformation beam theory by using finite element method. A MATLAB code developed to calculate natural frequencies for clamped and simply supported conditions. The obtained results are compared with published studies and excellent agreement is observed. In the study, the effects of crack location, depth of the crack, power law index and slenderness ratio on the natural frequencies are investigated.

Detection of a Crack in Beams by Eigen Value Analysis (고유치 해석을 이용한 보의 크랙 탐색)

  • Lee, Hee-Su;Lee, Ki-Hoon;Cho, Jae-Hoon
    • Proceeding of EDISON Challenge
    • /
    • 2016.03a
    • /
    • pp.195-202
    • /
    • 2016
  • In this paper, crack detection method using eigen value analysis is presented. Three methods are used: theoretical analysis, finite element method with the cracked beam elements and finite element method with three dimensional continuum elements. Finite element formulation of the cracked beam element is introduced. Additional term about stress intensity factor based on fracture mechanics theory is added to flexibility matrix of original beam to model the crack. As using calculated stiffness matrix of cracked beam element and mass matrix, natural frequencies are calculated by eigen value analysis. In the case of using continuum elements, the natural frequencies could be calculated by using EDISON CASAD solver. Several cases of crack are simulated to obtain natural frequencies corresponding the crack. The surface of natural frequency is plotted as changing with crack location and depth. Inverse analysis method is used to find crack location and depth from the natural frequencies of experimental data, which are referred by another papers. Predicted results are similar with the true crack location and depth.

  • PDF

Dynamic Behavior of Rotating Cantilever Beam with Crack (크랙을 가진 회전 외팔보의 동특성 해석)

  • Yoon, Han-Ik;Son, In-Soo
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.15 no.5 s.98
    • /
    • pp.620-628
    • /
    • 2005
  • In this paper, we studied about the dynamic behavior of a cracked rotating cantilever beam. The influences of a rotating angular velocity, the crack depth and the crack position on the dynamic behavior of a cracked cantilever beam have been studied by the numerical method. The equation of motion is derived by using the Lagrange's equation. The cracked cantilever beam is modeled by the Euler-Bernoulli beam theory. The crack is assumed to be in the first mode of fracture and to be always opened during the vibrations. The lateral tip-displacement and the axial tip-deflection of a rotating cantilever beam is more sensitive to the rotating angular velocity than the depth and position of crack. Totally, as the crack depth is increased, the natural frequency of a rotating cantilever beam is decreased in the first and second mode of vibration. When the crack depth is constant, the natural frequencies of a rotating cantilever beam are proportional to the rotating angular velocity in the each direction.

Forced vibration analysis of cracked functionally graded microbeams

  • Akbas, Seref D.
    • Advances in nano research
    • /
    • v.6 no.1
    • /
    • pp.39-55
    • /
    • 2018
  • Forced vibration analysis of a cracked functionally graded microbeam is investigated by using modified couple stress theory with damping effect. Mechanical properties of the functionally graded beam change vary along the thickness direction. The crack is modelled with a rotational spring. The Kelvin-Voigt model is considered in the damping effect. In solution of the dynamic problem, finite element method is used within Timoshenko beam theory in the time domain. Influences of the geometry and material parameters on forced vibration responses of cracked functionally graded microbeams are presented.