• Title/Summary/Keyword: crack width prediction

Search Result 45, Processing Time 0.025 seconds

Maximum Crack Width Control in Concrete Bridges Affected By Corrosion (부식을 고려한 콘크리트 교량의 최대 균열폭 제어)

  • Cho, Tae-Jun
    • Journal of the Korean Society of Safety
    • /
    • v.21 no.3 s.75
    • /
    • pp.114-121
    • /
    • 2006
  • As one of the serviceability limit states, the prediction and control of crack width in reinforced concrete bridges or PSC bridges are very important for the design of durable structures. However, the current bridge design specifications do not provide quantitative information for the prediction and control of crack width affected by the initiation and propagation of corrosion. Considering life span of concrete bridges, an improved control equation about the crack width affected by time-dependent general corrosion is proposed. The developed corrosion and crack width control models can be used for the design and the maintenance of prestressed and non-prestressed reinforcements by varying time, w/c, cover depth, and geometries of the sections. It can also help the rational criteria for the quantitative management and the prediction of remaining life of concrete structures.

Crack Width Prediction in Concrete Bridges Considering Bond Resistances affected by Corrosion (부식에 의한 부착저항감소를 고려한 콘크리트 교량의 균열폭 예측)

  • Cho, Tae-Jun;Cho, Hyo-Nam;Park, Mi-Yun
    • Journal of the Korea Concrete Institute
    • /
    • v.18 no.4 s.94
    • /
    • pp.543-552
    • /
    • 2006
  • The current design for crack width control in concrete bridges is incomplete in analytical models. As one of the important serviceability limit states, the crack width be considered with the quantitative prediction of the initiation and propagation of corrosion and corrosion-induced cracking. A serviceability limit state of cracking can be affected by the combined effects of bond, slip, cracking, and corrosion of the reinforcing elements. Considering life span of concrete bridges, an improved prediction of crack width affected by time-dependent general corrosion has been proposed for the crack control design. The developed corrosion models and crack width prediction equation can be used for the design and the maintenance of prestressed and non-prestressed reinforcements by varying time, w/c, cover depth, and geometries of the sections. It can also be used as the rational criteria for the maintenance of existing concrete bridges and the prediction of remaining life of concrete structures.

Determination of Crack Width and Crack Spacing in Reinforced Concrete Flexural Members (철근(鐵筋)콘크리트 휨부재의 균열폭 및 균열간격의 결정)

  • Kang, Young Jin;Oh, Byung Hwan
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.5 no.4
    • /
    • pp.103-111
    • /
    • 1985
  • Presented is a study on the determination of crack width and crack spacing in the reinforced concrete flexural members. The derivation of crack width and crack spacing is based on the recently developed cracking theory. The new prediction formulas for the crack widths and crack spacings are proposed. An experiment for the reinforced concrete beams was conducted to compare with the proposed formulas. The comparisons of the present prediction formulas with our tests and other test data show good agreement. The present crack width formula has been also compared with the well-known ACI formula originally proposed by Gergely & Lutz. It was found that the present crack width formula shows better correlation with test data than that of Gergely & Lutz.

  • PDF

Semi-Empirical Prediction of Crack Width of the Strengthened Bridge Deck with External Bonding Plastic (외부부착 보강된 교량 바닥판 균열폭의 반경험적인 예측)

  • 심종성;오홍섭
    • Journal of the Korea Concrete Institute
    • /
    • v.14 no.2
    • /
    • pp.231-238
    • /
    • 2002
  • Dry shrinkage md temperature change cause to develope concrete bridge decks on main girders have initial unidirectional cracks in longitudinal or transverse direction. As they receive traffic loads, the crack gradually propagate in different directions depending on the concrete dimension and reinforcement ratio. Since existing equations that predict crack width are mostly based on the one directional bond-slip theory, it is difficult to determine the actual crack width of a bridge deck with varying the spacing of rebar or strengthening material and to estimate the improvement rate in serviceability of the strengthened bridge deck. In this study, crack propagation mechanism is identified based on the test results and a new crack prediction equation is proposed for evaluation of serviceability. Although more accurate results are derived using the proposed equation, the extent of error is increased as the strain of the rebar or the strengthening material increases after the yielding of rebar Therefore, further research is required to better predict the crack width after the rebar yields under fatigue loading condition.

Corrosion Induced Long Term Crack Width Prediction for Structural Concrete Members (철근콘크리트 부재에서 철근 부식을 고려한 장기 균열폭 예측)

  • Lee, Gi-Yeol;Yang, Jun-Ho;Chung, Won-Yong;Rho, Sam-Young;Kim, Dae-Joong;Kim, Woo
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2009.05a
    • /
    • pp.199-200
    • /
    • 2009
  • This research developed a long-term crack width prediction model based on bond characteristics that considered steel corrosion, concrete shrinkage and creep in cracking stabilized structural concrete members.

  • PDF

Concrete Crack Detection and Visualization Method Using CNN Model (CNN 모델을 활용한 콘크리트 균열 검출 및 시각화 방법)

  • Choi, Ju-hee;Kim, Young-Kwan;Lee, Han-Seung
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2022.04a
    • /
    • pp.73-74
    • /
    • 2022
  • Concrete structures occupy the largest proportion of modern infrastructure, and concrete structures often have cracking problems. Existing concrete crack diagnosis methods have limitations in crack evaluation because they rely on expert visual inspection. Therefore, in this study, we design a deep learning model that detects, visualizes, and outputs cracks on the surface of RC structures based on image data by using a CNN (Convolution Neural Networks) model that can process two- and three-dimensional data such as video and image data. do. An experimental study was conducted on an algorithm to automatically detect concrete cracks and visualize them using a CNN model. For the three deep learning models used for algorithm learning in this study, the concrete crack prediction accuracy satisfies 90%, and in particular, the 'InceptionV3'-based CNN model showed the highest accuracy. In the case of the crack detection visualization model, it showed high crack detection prediction accuracy of more than 95% on average for data with crack width of 0.2 mm or more.

  • PDF

Cracking behavior of transversely prestressed concrete box girder bridges (횡방향 프리스트레스트 박스거더의 균열거동 연구)

  • Oh, Byung-Hwan;Choi, Young-Choel
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.05a
    • /
    • pp.303-306
    • /
    • 2005
  • The cracking behavior of prestressed concrete members is important for the rational design of prestressed concrete structures. However, the test data on the cracking behavior of prestressed concrete structures are very limited. The purpose of the present study is to investigate the crack spacing and crack width in transversely post-tensioned decks of concrete box girder bridges under applied loading. For this purpose, large scale test members of concrete box girder segments were fabricated and tested. The crack widths, crack spacings and crack patterns were investigated for various load levels. The crack widths and steel strains were continuously monitored during the loading process. To derive a rational predicton equation for crack width, the bond characteristics of post-tensioned steel and nonprestressed rebar in the PSC members were explored first. This was done by measuring the strains of prestressing steel and nonprestressed rebar in the test members under loading. A simple equation for the prediction of maximum crack width in transversely post-tensioned concrete one-way slabs is proposed by considering bond characteristic of prestressing steel and nonprestressed reinforcement. The comparison of proposed equation with experimental data shows good correlation. The present study indicates that ACI and CEB-FIP code equations exhibit rather large deviation from test data on prestressed concrete members.

  • PDF

Fracture Behavior of CIP Anchor in Cracked Concrete (균열 콘크리트 면에서의 CIP앵커의 파괴거동)

  • 김호섭;윤영수;윤영수;박성균
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.05a
    • /
    • pp.169-174
    • /
    • 2001
  • This study concerns crack effect on concrete anchor system and prediction of tensile capacity, as governed by concrete cone failure, of single anchors located at center of concrete specimen. To Investigate crack effect three different types of crack such as crack width of 0.2mm and 0.5nm, crack depth of loom and 20cm, and crack location of center and biased point were simulated. The static tensile load was subjected to 7/8 in. CIP anchor embedded in concrete of strength 280kg/$cm^{2}$. Tested pullout capacity was compared to prediction value by each current design method (such as ACI 349-97, ACI 349 revision and CEB-FIP which is based on CC Method), In these comparison CC Method and ACI revision showed almost same value in uncracked concrete specimen, however in cracked concrete CC Method showed conservativeness. Therefore the design by ACI 349 revision is recommended for the safe and economic design.

  • PDF

An Experimental Study on the Flexural Cracking Behavior of Partially Prestressed Concrete Slabs (부분 프리스트레스트 콘크리트 슬래브의 휨 균열 거동에 관한 실험적 연구)

  • 박홍용;연준희;최익창
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1990.04a
    • /
    • pp.108-115
    • /
    • 1990
  • This paper contains experimental studies on the flexural cracking behabior of PPC one-way slabs. Three post tensioned bonded PPC slabs with the same prestressing ratio and ultimate moment strength were tested. Based upon test results, this paper also presents the crack width prediction formula PPC slab. According to the crack theory developed mainly in Europe, crack width formula is given as the product of crack spacing and mean steel strain after decompression. Aaaaverage crack spacing formula is composed of many factors mainly such as concrete cover, concrete effective area in tension, sum of reinforcing bars perimeters and mixed reinforcements. In particular, it is very important to specify the bond characteristics of mixed reinforcements, since bond characteristics of PC bars are different from those of non-tensioned deformed bars. For this reason, a reduced bond coefficients for PS bars is employed in this study.

  • PDF

Prediction of Crack Width and Bond Stress-Slip Relationships in Reinforced Concrete Members (철근콘크리트 부재의 부착응력-미끌림 관계와 균열폭 예측)

  • Kim Jang Hyun;Lee Ki Yeo;Kim Dae Joong;Kim Woo
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.11a
    • /
    • pp.193-196
    • /
    • 2005
  • This study deals with the estimation of the crack width by stabilized cracking considering bond-slip relationships in reinforced concrete members. The proposed method utilizes the sameness of tension stiffening and a change of bond-slip relationships because of concrete's splitting. The validity, accuracy and efficiency of the proposed method are established by comparing the analytical results with the experimental date and the major code spcifications. The analytical results of analysis presented in this study indicate that the proposed method can be effectively estimated the crack width of the reinforced concrete members.

  • PDF