Crack width is an important indicator to evaluate the health condition of the concrete structure. The crack width is measured by manual using crack width gauge commonly, which is time-consuming and laborious. In this paper, we have proposed a fast and simplified crack width quantification method via deep Q learning and geometric calculation. Firstly, the crack edge is extracted by using U-Net network and edge detection operator. Then, the intelligent decision of is made by the deep Q learning model. Further, the geometric calculation method based on endpoint and curvature extreme point detection is proposed. Finally, a case study is carried out to demonstrate the effectiveness of the proposed method, achieving high precision in the real crack width quantification.
Crack is the most common typical feature of concrete deterioration, so routine monitoring and health assessment become essential for identifying failures and to set up an appropriate rehabilitation strategy in order to extend the service life of concrete structures. At present, image segmentation algorithms have been applied to crack analysis based on inspection images of concrete structures. The results of crack segmentation offering crack information, including length, width, and area is helpful to assist inspectors in surface inspection of concrete structures. This study proposed an algorithm of image segmentation enhancement, named morphological segmentation based on edge detection-II (MSED-II), to concrete crack segmentation. Several concrete pavement and building surfaces were imaged as the study materials. In addition, morphological operations followed by cross-curvature evaluation (CCE), an image segmentation technique of linear patterns, were also tested to evaluate their performance in concrete crack segmentation. The result indicates that MSED-II compared to CCE can lead to better quality of concrete crack segmentation. The least area, length, and width measurement errors of the concrete cracks are 5.68%, 0.23%, and 0.00%, respectively, that proves MSED-II effective for automatic measurement of concrete cracks.
포장은 건조수축이나 온도변화 또는 차량의 반복하중 등으로 인하여 균열이 발생하게 된다. 발생된 균열 부위로 우수의 침입 및 비압축성 물질이 침투하여 하부층의 지지력 저하, 과다한 스폴링, 2차 균열 등의 파손이 발생하게 된다. 이런 문제점을 해소하기 위해서는 균열폭을 제한하여 관리해야하며 이것은 정확한 균열폭 감지를 필요로 한다. 현재의 측정방법은 공간적 시간적으로 많은 제약을 받는 현미경을 이용한 육안조사가 전부인 실정이다. 본 연구의 목적은 망원렌즈를 장착한 자동포장상태 조사장비를 사용하여 도로에서 주위차량과 비슷한 속도로 주행하면서 가장 정확한 균열폭을 감지할수 있는 조건을 찾는 것이다. 본 연구는 모의조사를 통하여 균열폭 크기에 따른 카메라 초점거리를 결정하고 망원렌즈를 부착한 카메라로 노면을 확대 촬영한 자료를 이미지프로세싱 프로그램인 STADI-2에서 여러 가지 factor를 사용하여 산출된 균열폭과 현장조사를 통하여 현미경으로 실측한 균열폭을 비교 분석한 결과, 이미지프로세싱을 이용한 최적균열폭 감지조건을 제시하였다. 연구결과 CRCP(연속철근콘크리트포장)에서는 카메라 초점거리 75mm를 사용하여 균열폭 0.5mm$\sim$1.2mm일때 정확도 80%이상으로 측정 가능했으며 아스팔트포장에서는 카메라 초점거리 12.5mm를 사용하여 균열폭 1.8mm$\sim$3.3mm에서 90%의 정확도로 균열폭을 감지할 수 있었다.
Concrete is said to have a high degree of extensibility when it is subjected to large deformations without cracking. The cracking behavior of concrete in the field may even be more complex. For example, in mass concrete compressive stresses are developed during the very early period when temperatures are rising, and the tensile stresses do not develop until at a later age when the temperature begins to decline. Actual cracking and failure depend on the combination of factors and indeed it is rarely that a single adverse factor is responsible for cracking of concrete. The importance of cracking and the minimum width at which a crack is considered significant depend on the conditions of exposure of the concrete. The ultrasonic pulse measurements can be used to detect the development of cracks in structures such as dams, and to check deterioration due to frost or chemical action. An estimate of the depth of a crack visible at the surface can be obtained by measuring the transit times across the crack for two different arrangements of the transducers placed on the surface. In this paper, the concrete cracks that artificially introduced crack width is 1 and 2mm, crack depth is 2, 4, 6, 8cm were measured by Tc-To Method In consequence, the measured depth was increased with increase of measuring distance from concrete crack. The most reliable results were shown when the introduced crack width was 1mm, and the measuring distance was 10cm from concrete crack.
최근 구조물의 유지관리의 중요성이 부각되면서 자기치유 콘크리트 기술 분야의 연구가 활발히 이루어지고 있다. 이에 반해서 자기치유 성능을 평가하기 위한 척도는 부족한 실정이다. 균열폭을 측정하기 위한 방법으로 시각적인 방법이 1차적으로 사용되고 있으나 시편 내부의 균열폭을 관찰하기가 어려우며, 비균질한 균열특성으로 인해 표면에 대한 국부적인 측정만 할 수 있는 단점이 있다. 균열에 대한 간접적인 평가 방법으로 투수실험이 널리 활용되고 있지만 물의 점성으로 인한 문제가 있으며, 또한 실험 중 시편내부 물질의 용출될 가능성이 존재한다. 본 연구에서는 기체확산 특성을 활용한 균열폭 평가 방법을 제안하고자 하였다. 아크릴로 이상화된 직선균열을 제작하여 균열폭, 두께에 따른 시편의 확산계수를 분석하였다. 실험결과를 통하여 균열폭과 확산계수는 선형관계에 있음을 보였고, 두께와 확산계수는 역수의 관계에 있음을 증명하였다.
콘크리트 구조물의 균열은 장기간 지속 시 철근의 부식을 촉진시키므로 구조적 사용성을 보장하고 열화를 방지하기 위해 정기적인 현장 점검이 필수적이다. 대부분의 시설물 안전점검은 육안 검사에 의존하고 있어 비용과 시간 소모가 심하고 점검자에 따라 결과의 신뢰도 차이가 발생한다. 본 연구에서는 카메라로 촬영된 균열의 이미지 분석을 통해 콘크리트 균열의 폭과 길이를 측정하는 장치로서 안전진단 및 유지관리에 사용할 수 있는 휴대용 측정 장치를 개발하였다. 이 장치는 측정자가 육안으로 발견한 균열을 가까운 거리 (3m) 이내에서 촬영하고 레이저 거리측정으로 단위 픽셀크기를 정확히 산정하여, 본 연구에서 개발한 이미지 처리 알고리즘으로 균열 길이와 폭을 자동으로 산정할 수 있다. 측정결과 실험에 적용한 균열 이미지를 이용하여 3m 거리 이내에서 0.3mm 균열의 길이 측정은 약 10% 오차 범위에서 측정 가능하였다. 균열 폭의 경우 이진화 과정에서 진동 및 Blurring에 의한 주변픽셀을 검출해 과대평가되는 경향을 나타내었으나, 균열 폭 감소함수를 적용하여 효과적으로 보정할 수 있었다.
Cracks of concrete structure must be analyzed and estimated synthetically in order to have a maintenance and to insure the safety and the durability of structure. Concrete cracks have to be surveyed with respect to depth, width, shape and direction etc, but crack depth among these items is not measured easily. Occasionally, it needs to measure the crack depth of concrete structure for the purpose of evaulating the safe capacity and the necessity of repair. Therefore, this research is performed to verify the applicability and the accuracy of Ultra-sonic Pulse Velocity Technique(Tester), in non-destructive testing methods of concrete crack depth.
최근 스마트폰의 고해상도 카메라는 영상처리 기법을 이용하여 콘크리트 균열과 같은 미세한 피사체의 측정을 가능하게 한다. 이미 접사 범위 정도의 가까운 거리에서 어플리케이션을 이용하여 균열폭을 조사하는 기술이 구현되어있으나, 이용에 제한적이므로 보다 먼 거리에서 균열을 측정할 수 있도록 스마트폰 고해상도 카메라의 사용성 검증이 필요하다. 본 연구는 2m 이내에서 거리에서 균열폭 1.0mm 이내의 두께에서 세분화된 균열폭들의 크기 인지에 초점을 두고 있다. 최근의 안드로이드 기반 스마트폰들을 대상으로 카메라 해상도에 따라 측정 구성요소인 단위 픽셀 크기와 촬영거리와의 관계를 중심으로 실험을 수행하였으며, 그 결과 0.3mm 이상 1mm 이하 미세 균열폭의 구분과 정량화를 위해서 스마트폰용 렌즈의 필요성을 확인할 수 있었다. 스마트폰용 범용 텔레센트릭 렌즈는 왜곡의 영향을 최소화하기 위해서 정확한 위치에 장착이 필요하였다. 또한, 64MP의 고해상도 스마트폰 카메라와 2배 확대렌즈를 적용한 결과 2m 이내에서 픽셀단위로 균열폭을 산정할 수 있었으며, 0.3mm, 0.5mm, 1mm 균열폭 구분이 가능하였다.
The crack of concrete structure plays an important role in the durability and safety of structure. Therefore, the features such as width, length, and direction of that must be measured periodically. The conventional method of measurement of cracks is manually sketched, however. it takes a fairly long time and lacks quantitative objectivity. This study proposes the algorithm to extract and analyze cracks automatically. The proposed algorithm is composed of two sub-algorithms. The extraction algorithm includes elimination of effect due to light, binarization. and noise reduction. The analysis algorithm includes thinning process, labeling, and calculation of crack width, length, and direction. The test to demonstrate the algorithm is fulfilled using the images of cracks on real concrete surface.
Crack detection is an essential method to ensure the safety of dam concrete structures. Low-quality crack images of dam concrete structures limit the application of neural network methods in crack detection. This research proposes a modified attentional mechanism model to reduce the disturbance caused by uneven light, shadow, and water spots in crack images. Also, the focal loss function solves the small ratio of crack information. The dataset collects from the network, laboratory and actual inspection dataset of dam concrete structures. This research proposes a novel method for crack detection of dam concrete structures based on the U-Net neural network, namely AF-UNet. A mutual comparison of OTSU, Canny, region growing, DeepLab V3+, SegFormer, U-Net, and AF-UNet (proposed) verified the detection accuracy. A binocular camera detects cracks in the experimental scene. The smallest measurement width of the system is 0.27 mm. The potential goal is to achieve real-time detection and localization of cracks in dam concrete structures.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.