• Title/Summary/Keyword: crack tip opening displacement

Search Result 86, Processing Time 0.031 seconds

Stress Intensity Factors of a Combined Mode (I/III) Crack in a Variable Thickness Plate -CT Type- (두께가 변화하는 부재 내의 혼합모드 (I/III)균열의 응력확대계수 -CT형-)

  • 조명래
    • Journal of the Korean Society of Safety
    • /
    • v.13 no.3
    • /
    • pp.24-31
    • /
    • 1998
  • Variable thickness plates are commonly encountered in the majority of mechanical/structural components of industrial applications. And, as a result of the unsymmetry of the structure or the load and the anisoptropy of the materials, the cracks in engineering structures are generally subjected to combined stresses. In spite of considerable practical interest, however, a few fracture mechanics study on combined mode crack in a variable thickness plate have carried out. In this respect, combined mode I/III stress intensity factors $K_I$ and $K_III$ at the crack tip for a variable thickness plate were obtained by 3-dimensional finite element analysis. Variable thickness plates containing a central slant crack were chosen. The parameters used in this study were dimensionless crack length $\lamda$, crack slant angle $\alpha$, thickness ratio $\beta$ and width ratio $\omega$. Stress intensity factors were calculated by crack opening displacement(COD) and crack tearing displacement(CTD) method.

  • PDF

Interfacial Crack Propagation Under Various Mode-Mixes

  • Park, Byung-Sun;Chai, Young-Suck
    • Journal of Mechanical Science and Technology
    • /
    • v.16 no.1
    • /
    • pp.39-45
    • /
    • 2002
  • Initiation and propagation of interfacial crack along bimaterial interface are considered in this study. A biaxial loading device for a single specimen is used for obtaining a wide range of mode-mixities. The specimen is an edge-cracked bimaterial strip of glass and epoxy; the biaxial loading device, being capable of controlling displacements in two perpendicular directions, is developed. A series of interfacial crack initiation and Propagation experiments are conducted using the biaxial loading device for various mixed modes. Normal crack opening displacement (NCOD) is measured near crack front by a crack opening interferometry and used for extracting fracture parameters. From mixed mode interfacial crack initiation experiments, large increase in toughness with shear components is observed. The behavior of interfacial crack propagation analyzed as a function of mode-mix shows that initial crack propagation is delayed with increase of mode-mixity, and its velocity is increased with positive mode-mixity but decreased with negative case. However, it is found that crack propagation is less accelerated with positive mode-mixity than the negative mode-mixity, which may be caused by contact and/or effects of friction between far field and near-tip Held along the interfacial crack.

Determination of Stress Intensity Factor for a Crack Perpendicular to Bimaterial Interface by Finite Element Method (유한요소법에 의한 이종재료 접합면에 수직인 균열의 응력확대계수 결정)

  • 임원균;김상철;이창수
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.10
    • /
    • pp.2398-2406
    • /
    • 1993
  • Abdi's numerical method(ref.13) for representing a stress singularity by shifting the mid-side nodes of isoparametric elements is reviewed. A simple technique to obtain the optimal position of the mid-side nodes in quadratic isoparametric finite element is presented. From this technique we can directly obtain the position of the side-nodes adjacent to the crack tip. It is also observed that the present technique provides good accuracy for the expression of the opening displacement and the determination of the mid-side nodes for more wide range of material properties than that obtained by Abdicant the finite element method is applied to determine stress intensity factors for pressurized crack perpendicular to and terminating at the interface of two bonded dissimilar materials. A proper definition for stress intensity factors of a crack perpendicular to bimaterial interface is provided. It is based upon a near-tip displacement solutions on the crack surface for interface crack between two dissimilar materials. Numerical testing is carried out with the eight-node and six-node elements. The results obtained are compared with the previous solutions.

Stress Intensity Factors of Combined Mode(Mode I/II) Crack in a Variable Thickness Plate (두께가 변화하는 부재 내의 혼합모드(모드 I/II) 균열의 응력확대계수)

  • 조명래;양원호;최용식
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.8
    • /
    • pp.1875-1882
    • /
    • 1993
  • Variable thickness plates are commonly used as structural members in the majority of industrial sectors. Previous fracture mechanics researches on variable thickness plates were limited to mode I loading cases. In practice, however, cracks are usually located inclined to the loading direction. In this respect, combined mode(mode I/II) stress intensity factors $K_{I}$ and $K_{II}$ at the crack tip for a variable thickness plate were obtained by 3-dimensional finite element analysis. Variable thickness plates containing a slant edge crack were chosen. The parameters used in this study were dimensionless crack $length{\lambda}$, slant $angle{\alpha}$, thickness $ratio{\beta}$ and width ratio{\omega}$. Stress intensity factors were calculated by crack opening displacement(COD) and crack sliding displacement(CSD)method proposed by Ingraffea and Manu.

Propagation of Crack in Concrete Subjected to Dynamic Loading (동적하중(動的荷重)을 받는 콘크리트의 구열(龜裂)성장)

  • Kang, Sung Hoo;Kim, Woo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.8 no.2
    • /
    • pp.135-145
    • /
    • 1988
  • This study deals with the prediction of crack propagation in concrete mortar subjected to static and dynamic load. Total 54 CLWL-DCB(Crack-line-loaded-double-cantilever beam) concrete mortar specimens were tested to measure crack growth using ASTM 561-80. Main variables were sand to cement ratio and water to cement ratio. The resulting load(P)-COD(Crack Opening Displacement; $2V_1$) curves and COD-CTOD (Crack Tip Opening Displacement; $2V_2$) curves were analyzed to calculate effective crack length and physical crack length by way of ASTM 561-80 proposed. Replica crack length were also obtained directly during the test. The differences in crack propagation between under static load and under dynamic load were investigated.

  • PDF

New Engineering Estimation Method of J-Integral and COD for Circumferential Through-Wall Cracked Pipes (원주방향 관통균열이 존재하는 배관의 J-적분 및 COD 계산을 위한 새로운 공학적 계산식)

  • Kim, Yun-Jae;Heo, Nam-Su;Kim, Yeong-Jin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.3
    • /
    • pp.548-553
    • /
    • 2001
  • A new method to estimate the elastic-plastic J-integral and the crack tip opening displacement (COD) for circumferential through-wall cracked pipes under tension and under bending is proposed for Leak-Before-Break (LBB) analysis. Being based on the reference stress method with further modifications, the proposed method is simple to use and easy to be generalised in practice. Comparison of the CODs, predicted using the proposed method with published pipe test data show overall excellent agreement.

Analysis of bridging Stress Effect of Polycrystlline Aluminas Using Double Cantilever Beam Method (Double Cantilever Beam 방법을 이용한 다결정 알루미나의 Bridging 응력효과 해석 III. 다결정 알루미나의 Bridging 응력분포)

  • 손기선;이성학;백성기
    • Journal of the Korean Ceramic Society
    • /
    • v.33 no.5
    • /
    • pp.602-615
    • /
    • 1996
  • The purpose of the present study is to investigate the microstructural effect on the R-curve behavior in three aluminas with different grain size distributions by analyzing the bridging stress distribution. The crack opening displacement (COD) according to the distance behind the stationary crack tip was measured using an in situ SEM fracture method. The measured COD values in the fine-grained alumina agreed well with Wiederhorn's sollution while they deviated from Wiederhorn's solution in the two coarse-grained aluminas because of the increase of the crack closure due to the grain interface bridging in the crack wake. A numerical fitting procedure was conducted by the introduction of the power-law relation and the current theoretical model together with the measured COD's in order to obtain the bridging stress distribution. The results indicated that the bridging stress function and the R-curve computed by the current model were consistent with those computed by the power-law relation providing a reliable evidence for the bridging stress analysis of the current model. The strain-softening exponent in the power-law relation n, was calculated to be in the range from 2 to 3 and was closely related to the grain size distribution. Thus it was concluded from the current theoretical model that the grain size distribution affected greatly the bridging stress distribution thereby resulting in the quantitative analysis of microfracture of polycrystalline aluminas through correlating the local-fracture-cont-rolling microstructure.

  • PDF

A model of fatigue crack growth based on plastic stretch at the crack tip (균열선단의 소성스트레치를 이용한 피로균열성장모델)

  • Ju, Yeong Sik;Kim, Jae Hun
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.31 no.3
    • /
    • pp.15-22
    • /
    • 2003
  • The fatigue crack growth model is derived and the retardation model is proposed. The fatigue crack growth model considers the residual plastic stretch on the crack surface which results from the plastic deformation at the tip of fatigue crack. The fatigue crack growth rate is calculated by using the cumulative fatigue damage and plastic strain energy in the material elements at the crack tip. This model gives the crack growth rate in reasonable agreement with test data for aluminum alloy AL6061-T651 and 17-4PH casting steel. The fatigue crack growth retardation model is based on the residual plastic stretch produced from a tensile overload which reduced the plastic strain range of the following load cycles. A strip-yield model of a crack tip plasticity is used for the calculation of a plastic zone size. The proposed retardation model characterized the observed features and delayed retardation of the fatigue crack growth under tensile overload.

Evaluation of Fracture Behavior on Particle Reinforced Composite Using Digital Image Correlation (DIC를 이용한 입자강화 복합재료의 파괴거동 평가)

  • Hong, Sang-Hyun;Lee, Jeong-Won;Kim, Jae-Hoon;Lee, Sang-Yeon;Park, Jae-Beom;Jung, Gyoo-Dong
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.46 no.7
    • /
    • pp.535-541
    • /
    • 2018
  • In this study, wedge splitting tests were performed to evaluate fracture behavior of particle reinforced composite materials. Crack resistance was evaluated by using CTOD (crack tip opening displacement) and crack tip opening angle (CTOA). The particle reinforced composites were tested under various temperature ($-60^{\circ}C{\sim}50^{\circ}C$) and load speed (5~500mm/min). Also, digital image correlation method (DIC) was used to analyze the strain field at crack tip. Test results showed that the fracture energy increased with decreasing temperature and crack resistance increased with increasing load velocity.

Influence of stress ratio and microstructural size on fatigue crack growth and crack closure in near-threshold (複合組織鋼의 疲勞균열진전거동과 균열닫힘조건에 미치는 應力比 및 微視組織크기의 영향)

  • 김정규;황돈영
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.12 no.6
    • /
    • pp.1343-1349
    • /
    • 1988
  • In this study, it is investigated for the effects of stress ratio and grain size on fatigue crack growth behavior and crack closure, in ferrite-martensite dual phase steels. The results obtained are as follows ; .DELTA. $K_{th}$ is independent of the ferrite grain size, but decreases with increasing stress ratio. The relation between .DELTA. $K_{th}$ and stress ratio R is as follows : .DELTA. $K_{th}$ =15.1(1-0.95R). But (.DELTA. $K_{eff}$)$_{th}$ in terms of crack closure is approximately 2.5 MPa.root.m. Also, variation of the degree of crack deflection to crack tip opening displacement at the minimum load is considered as a parameter of crack closure.e.e.