DOI QR코드

DOI QR Code

Evaluation of Fracture Behavior on Particle Reinforced Composite Using Digital Image Correlation

DIC를 이용한 입자강화 복합재료의 파괴거동 평가

  • Received : 2018.01.22
  • Accepted : 2018.06.11
  • Published : 2018.07.01

Abstract

In this study, wedge splitting tests were performed to evaluate fracture behavior of particle reinforced composite materials. Crack resistance was evaluated by using CTOD (crack tip opening displacement) and crack tip opening angle (CTOA). The particle reinforced composites were tested under various temperature ($-60^{\circ}C{\sim}50^{\circ}C$) and load speed (5~500mm/min). Also, digital image correlation method (DIC) was used to analyze the strain field at crack tip. Test results showed that the fracture energy increased with decreasing temperature and crack resistance increased with increasing load velocity.

본 연구에서는 입자강화 복합재료의 파괴거동을 평가하기 위해 쐐기분열시험을 수행하였다. 균열 저항성을 분석하기 위해 균열선단열림변위(CTOD)와 균열선단열림각도(CTOA)를 이용하였다. 사용된 입자강화 복합재료는 특성상 온도와 하중속도에 영향을 많이 받기 때문에 다양한 온도($-60^{\circ}C{\sim}50^{\circ}C$)와 하중속도(5~500mm/min)조건에서 시험을 수행하였다. 또한 균열선단에 대한 변형률장을 분석하기 위해 디지털 이미지 상관법(DIC)을 이용하였다. 시험결과 파괴에너지는 온도가 감소할수록 증가하였으며, 하중속도가 증가할수록 균열저항성이 증가하였다.

Keywords

References

  1. Kim, C. K., Yoo, J. C., Hwang, G. S., and Yim, Y.J., "Properties of HTPB/AP/Butacene Propellants," Journal of the Korean Society of Propulsion Engineers, Vol. 9, No. 2, 2005, pp.40-45.
  2. Liu, C. T., "Crack Growth Behavior in a Solid Propellant," Engineering Fracture Mechanics, Vol. 56, No. 1, 1997, pp.127-135. https://doi.org/10.1016/S0013-7944(96)00107-5
  3. Tussiwand, G. S., Saoirna, V. E., Terzenbach, R., and De Luca, L. T., "Fracture Mechanics of Composite Solid Rocket Propellant Grains: Material Testing," Journal of Propulsion and Power , Vol. 25, No. 1, 2009, pp.60-73 https://doi.org/10.2514/1.34227
  4. Belrhiti, Y., Pop, O., Germaneau, A., Doumalin, P., Dipre, J. C., Harmuth, H., Huger, M., and Chotard, T., "Characterization of Timber Fracture using the Digital Image Correlation Technique and Finite Element Method," Journal of the European Ceramic Society, Vol. 35, 2015, pp.823-829. https://doi.org/10.1016/j.jeurceramsoc.2014.09.001
  5. Han, B., Ju, Y., and Zhou, C., "Simulation of Crack Propagation in HTPB Propellant using Cohesive Zone Model," Engineering Failure Analysis, Vol. 26, 2012, pp.304-317. https://doi.org/10.1016/j.engfailanal.2012.05.025
  6. ASTM, Standard Test Method for Linear-Elastic Plane-Strain Fracture Toughness KIC of Metallic Materials, ASTM E399-09, Annual Book of ASTM Standards, ASTM International, Philadelpia, P.A., USA, 2009, pp.1-33.
  7. Miller, T. C., "Poisson's Ratio Extrapolation from Digital Image Correlation Experiments (No. AFRL-RQ-ED-TP-2013-154)," Air Force Research Lab Edwards AFB CA Rocket Propulsion DIV., 2013.
  8. Na, S. H., Choi, H. S., Oh, K. K., and Kim, J. H., "Evaluation of Crack Resistance Properties on Particulate Reinforced Composite Propellant using Digital Image Correlation," Journal of the Korean Society of Propulsion Engineers, Vol. 19, No. 6, 2015, pp.26-32. https://doi.org/10.6108/KSPE.2015.19.6.026
  9. Zhang, H., Huang, G., Song, H., and Kang, Y., "Experimental Investigation of Deformation and Failure Mechanisms in Rock under Indentation by Digital Image Correlation," Engineering Fracture Mechanics, Vol. 96, No. 1, 2012, pp.667-675. https://doi.org/10.1016/j.engfracmech.2012.09.012
  10. Na, S. H., Lee, J. W., and Kim, J. H., "Crack Resistance Behavior Using Digital Image Correlation and Crack Tip Opening Angle on Particulate Reinforced," Transactions of the Korea Society of Mechanical Engineers A, Vol. 40, No. 12, 2016, pp.1021-1026. https://doi.org/10.3795/KSME-A.2016.40.12.1021
  11. BSI, Fracture Mechanics Toughness Tests. Method for Determination of $K_{IC}$, Critical CTOD and Critical J values of Metallic Materials, BS 7448-1:1991, British Standards Institution, London, 1991.
  12. ASTM, Standard Test Method for Measurement of Fracture Toughness, ASTM E1820-17a, Annual Book of ASTM Standards, ASTM International, Philadelpia, P.A., USA, 2017.
  13. Newman, J. C., James, M. A., and Zerbst, U., "A Review of the CTOA/CTOD Fracture Criterion," Engineering Fracture Mechanics, Vol. 70, No. 3, 2002, pp.371-385. https://doi.org/10.1016/S0013-7944(02)00125-X
  14. Seo, B. H., and Kim, J. H., "Effect of Temperature and Thickness on Fracture Toughness of Solid Propellant," Transaction Korea Society of Mechanical Engineers A, Vol. 37, No. 11, 2013, pp.1355-1360. https://doi.org/10.3795/KSME-A.2013.37.11.1355
  15. Bohn, M. A., and Elsner, P., "Aging of the Binders GAP-N100 and HTPB-IPDI Investigated by Torsion DMA," Propellants, Explosives, Pyrotechnics, Vol. 24, No. 3, 1999, pp.199-205. https://doi.org/10.1002/(SICI)1521-4087(199906)24:03<199::AID-PREP199>3.0.CO;2-L
  16. Seo, B., H., and Kim, J. H., "Estimation of Master Curves of Relaxation Modulus and Tensile Properties for Solid propellant," Advanced Materials Research, Vol. 871, 2015, pp.247-252.